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Abstract: Biosensors are innovative and cost-effective analytical devices that integrate
biological recognition elements (bioreceptors) with transducers to detect specific substances
(biomolecules), providing a high sensitivity and specificity for the rapid and accurate point-
of-care (POC) quantitative detection of selected biomolecules. In the meat production chain,
their application has gained attention due to the increasing demand for enhanced food
safety, quality assurance, food fraud detection, and regulatory compliance. Biosensors can
detect foodborne pathogens (Salmonella, Campylobacter, Shiga-toxin-producing E. coli/STEC,
L. monocytogenes, etc.), spoilage bacteria and indicators, contaminants (pesticides, dioxins,
and mycotoxins), antibiotics, antimicrobial resistance genes, hormones (growth promoters
and stress hormones), and metabolites (acute-phase proteins as inflammation markers)
at different modules along the meat chain, from livestock farming to packaging in the
farm-to-fork (F2F) continuum. By providing real-time data from the meat chain, biosensors
enable early interventions, reducing the health risks (foodborne outbreaks) associated with
contaminated meat/meat products or sub-standard meat products. Recent advancements
in micro- and nanotechnology, microfluidics, and wireless communication have further
enhanced the sensitivity, specificity, portability, and automation of biosensors, making
them suitable for on-site field applications. The integration of biosensors with blockchain
and Internet of Things (IoT) systems allows for acquired data integration and management,
while their integration with artificial intelligence (Al) and machine learning (ML) enables
rapid data processing, analytics, and input for risk assessment by competent authorities.
This promotes transparency and traceability within the meat chain, fostering consumer
trust and industry accountability. Despite biosensors’ promising potential, challenges such
as scalability, reliability associated with the complexity of meat matrices, and regulatory
approval are still the main challenges. This review provides a broad overview of the
most relevant aspects of current state-of-the-art biosensors” development, challenges, and
opportunities for prospective applications and their regular use in meat safety and quality
monitoring, clarifying further perspectives.

Keywords: biosensors; meat chain; pathogen detection; contaminants; food safety; quality
assurance; traceability

1. Introduction

Biosensors represent a promising and potent tool for enhancing animal health and
welfare, as well as food safety, by providing early information due to the possibility for
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the rapid and on-site detection of various hazards in the food production chain [1]. The
meat production chain is complex, involving multiple stages along the F2F continuum.
Other issues closely intersecting the meat chain are related to the environmental impacts of
intensive livestock production (e.g., on arable land/soil, water, forests, and the atmosphere)
and challenges in finding the appropriate and most effective solutions to adopt policies for
the management of production systems that are sustainable, economically justified, and
ethically accepted, which provide continuous meat/meat products supply on a global scale.
The optimization of livestock management systems requires the integration of a variety of
data and acquired knowledge on the environment, agricultural practices, biotechnology,
animal husbandry, nutrition and behavior, welfare, veterinary medicine, slaughter and
meat processing, distribution, and retail with modern electronic systems/devices able to
detect specific biomarkers and translate them into readable signals [2,3]. Such sensing
systems can play an important role in the transformation of the meat supply chain by
improving animal health, productivity, and the food safety of meat and meat products,
ultimately providing a higher level of consumer protection.

Biosensors are analytical devices that combine a biological component (such as en-
zymes, antibodies, nucleic acids (DNA and RNA), aptamers, or whole cells) with a trans-
ducer and detector system (Figure 1) to rapidly and cost-effectively detect specific sub-
stances from analytes with a high sensitivity and specificity [4-6]. The biological component
(bioreceptor) incorporated within the biosensor interacts with the analyte on the transducer,
which produces a measurable signal that is then converted into a user-understandable,
mostly quantifiable output.
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Figure 1. Common components of a biosensor and its working principles used to detect various
biomolecules from different analytes.

Different foodborne hazards can enter the meat chain at multiple points (Figure 2),
carrying potential risks that can compromise food safety and quality [3,7,8]. Animal health
and welfare monitoring on-farm (pre-harvest) is based on concepts such as the Heard
Health Surveillance Program (HHSP), while food safety hazards in later stages of the meat
chain, such as slaughter (harvest), meat processing, distribution, and retail (post-harvest),
are controlled by Hazard Analysis and Critical Control Points (HACCPs). These concepts
are risk-based, aiming to identify, detect, and prevent/control food-producing-animal-
based food safety hazards in a proactive way during the production process, before such
hazards can contaminate final food products. Such a proactive approach requires real-
time and early information on animal health and food safety hazards so that adequate
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corrective measures can be applied to eliminate or reduce such hazards before entering
later stages along the meat production chain. Current practices do not provide adequate
technical support (on-site detection) to fulfill early and prompt reactions, since they are
based on the collection of samples, e.g., blood, feces, slurry (on the farm) or swabs from
carcasses, meat juice, and lymph nodes (at slaughterhouse), and transportation in cold chain
environments (cool bin) to a central laboratory for time-consuming and labor-intensive
analysis (e.g., culturing, Enzyme-linked Immunosorbent Assay—ELISA, Polymerase Chain
Reaction—PCR, and High-Performance Liquid Chromatography—HPLC), which also
requires expensive equipment, a specially designated space, and highly trained laboratory
personnel. For example, the average time for obtaining the ELISA and PCR or PCR-HPLC
assay results is within 24 h at best [9,10], while for culturing techniques (by internationally
recognized standards, such as by the International Standard Organization/ISO), which are
considered to be the ‘gold standard” for the sensitive and specific detection of foodborne
pathogens, the results are available after 5 days (such as in the case of Salmonella detection;
ISO 6579 [11]) or 7 days (for Listeria monocytogenes detection; ISO 11290 [12]). On the
other hand, biosensors have emerged as an innovative technology offering a low-cost
solution for in-field detection, aiming to meet the Real-time connectivity, Ease of specimen
collection, Affordable, Sensitive, Specific, User-friendly, Rapid, Robust, Equipment free,
and Deliverable to end users (REASSURED) criteria [13,14]. Biosensors can enable a rapid
response time for obtaining accurate results and quantitative detection, with an average
read-out time of up to 30 min [15,16], which enables timely reactions in applying corrective
measures within HHSP and /or HACCPs, thus significantly improving the performance
of such risk-based animal health and food safety management systems. Therefore, the
major advantages of the use of biosensors over ‘traditional’ methods’ (culture techniques,
ELISA, and PCR), which are time-consuming and require expensive equipment, adequate
laboratory space, and highly trained personnel, is their user-friendly mode. This relates
to their on-site field application, providing early diagnostics and facilitating food chain
information (FCI) flow across the meat chain due to their capability to provide (i) rapid
detection—an approximate output of up to 30 min, allowing for real-time or near-real-
time monitoring; (ii) high sensitivity and specificity—the detection of very low levels
of pathogens, contaminants, or spoilage markers, which is crucial for early intervention;
and (iii) on-site testing—biosensors as lab-on-a-chip (LOC) and POC devices can be used
directly in farm environments, processing plants (slaughterhouse and meat processing), or
retail settings, thus reducing the need to send samples to the lab.

Globally, consumers’ perceptions of animal health, animal welfare, and food safety
issues have increased in significance over the previous decade, and the demand for proper,
real-time, and accurate information on the aforementioned meat safety issues needs to
be met for consumers to make informed choices when purchasing preferred meat/meat
products [17]. Further, the meat production system is facing the impacts of climate change,
as reflected in trends of global temperature increases, precipitation, and wind patterns
that are directly or indirectly associated with human activity [18]. Extreme weather events
have become more frequent, severe, and unpredictable. These events may jeopardize food
safety by changing the ecological patterns and dynamics of different hazards, including
foodborne ones, by altering their occurrence, virulence, and distribution, leading to an
increased exposure for consumers [19]. For example, a potential association between rising
temperatures and increased levels of antimicrobial resistance (AMR) in certain zoonotic
food (meat)-borne pathogens has been observed, e.g., Campylobacter spp., Salmonella spp.,
Listeria monocytogenes, and E. coli. Parallel to this, these pathogens are also showing an
increased resistance, in particular, to Critically Important Antibiotics (in accordance with
the World Health Organization/WHO CIA list) and /or Medically Important Antibiotics
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(in accordance with the WHO MIA list), thus reducing the efficacy and quality of clinical
treatments [20-23]. The meat production chain is also facing another challenge related to
its sustainability due to the environmental impacts of livestock production contributing
to anthropogenic greenhouse gas emissions to some extent [19]. Mitigation strategies that
include early sensor-based information on animal health and welfare can significantly re-
duce emissions, enabling the monitoring and optimization of farm animals” digestion, feed
conversion, and a better product yield [24]. In the context of meat safety, biosensors can
be effectively used to monitor food safety and quality by detecting foodborne pathogens
such as Salmonella, Campylobacter, Listeria, and pathogenic E. coli, chemical contaminants
such as antibiotics, pesticides, dioxins, heavy metals, and mycotoxins [25], specific bio-
chemical markers that indicate animal health (acute-phase proteins) and welfare (stress
hormones) [26,27], meat spoilage assessments by detecting ammonia, biogenic amines, and
volatile organic compounds (VOCs) [28], and food authenticity/food fraud (the presence
of undeclared species or the dilution of meat with other substances) verification based on
species identification [29,30]. Lastly, a new challenge is related to the process control of cell-
based (cultivated) meat, which is based on culturing cells isolated from animals followed
by processing to produce food products that are comparable to their corresponding animal
versions [31]. Potential food safety hazards (fecal-borne pathogens) during cell selection for
meat cultivation, production (e.g., Mycoplasma), harvesting (biological components, such
as growth factors and hormones from animal serum), food processing, and formulation
(additives, ingredients, and nutrients) [32] should be also regularly monitored to ensure
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Figure 2. Example of the meat chain structure and associated hazards.

In spite of the number of developed biosensing platforms for the detection of different
animal health, animal welfare, food safety, and food quality markers, their application
within regulatory frameworks is still a debated issue [33]. The major challenges to be tackled
are related to their specificity (although highly sensitive, some biosensors may suffer from
cross-reactivity, where they detect non-target substances, leading to false-positive results),
costs (the regular use of biosensors can be expensive, which may limit their widespread
adoption, especially in smaller operations), and calibration/standardization (ensuring that
biosensors are consistently accurate across different batches and environments) [33,34].
The major drivers related to the adoption of biosensors and their regular introduction into
meat production systems are related to the following: (i) regulatory compliance, such as
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food safety standards (stricter food safety regulations are pushing meat producers to adopt
technologies like biosensors to ensure compliance) and traceability requirements (demand
for greater transparency and traceability in the food chain), (ii) consumer demands, such as
quality assurance (with increasing consumer awareness and demand for high-quality, safe
meat products are driving the adoption of biosensors) and sustainability (consumers are
also pushing for sustainable practices, which biosensors can support by reducing waste
and improving efficiency) [35], (iii) technological advancements, such as portability (POC
devices based on advances in nanotechnology and microelectronics) [36] and real-time
monitoring (improved data analytics and connectivity allow for real-time monitoring
and rapid response to potential safety issues) [37], (iv) economic factors, such as cost-
effectiveness (since, as the cost of biosensor technology decreases, it becomes a more
attractive option for meat producers to improve the safety and efficiency of production
processes [31]), (v) sustainability and loss prevention (by allowing for the monitoring of
contamination and spoilage, biosensors help to prevent and/or reduce food waste and
economic losses) [5], and (vi) globalization, such as international trade (the global nature
of the meat industry, with products often crossing multiple borders, needs rigorous safety
checks, which biosensors can facilitate) and competitive advantages (companies adopting
biosensors may gain a competitive edge by offering safer, higher-quality products) [38].

This review highlights the following: (a) the most relevant and up-to-date aspects of
the current state-of-the-art of biosensors’ development and manufacturing, (b) challenges
and opportunities for prospective biosensors’ application and regular use in meat safety and
quality monitoring, and (c) research and development needs to address these challenges
and improve biosensors’ reliability and affordability.

2. Materials and Methods

A literature review was conducted by identifying and analyzing articles (research and
review scientific papers, technical reports, and guidelines by international organizations)
published in the domains of biosensors and sensing systems related to meat safety, meat
quality assurance, food fraud, food control, public health, zoonotic foodborne pathogens,
antimicrobial resistance, meat chain, meat-producing animals, animal health, animal wel-
fare, veterinary medicine, and detection methods. The searched documents originated from
international scientific databases such as the Web of Science, Scopus, Academic Search Com-
plete, IEEE Xplore, PubMed, EBSCO, and CAB Abstracts. The search algorithm included
relevant keywords and phrases related to the topic and was based on Boolean operators
(AND, OR, and NOT) to combine keywords and narrow down the results. These included
terms like “Biosensors AND meat safety”, “Biosensors AND meat quality”, “Biosensors
AND food fraud”, “Biosensors AND public health”, “Biosensors AND zoonotic food borne

/7S

pathogens”, “Biosensors and meat-producing animals”, “Biosensors AND animal health”,

a7

“Biosensors AND animal welfare”, “Biosensors AND detection methods”, “Biosensors

a7

AND antimicrobial resistance”, “Biosensors AND veterinary medicine”, “Biosensors AND
food control”, “Biosensors AND drivers”, “Biosensors AND nanotechnology”, “Biosensors
AND manufacturing”, and “Biosensors AND multiplex”. The search was performed for the
years between 1998 and 2025. Each source of information was further checked by reading
through the titles and abstracts of the search results to assess its relevance and eligibility
for the given topic. In total, 1200 publications were retrieved, while 231 publications were
selected for the purposes of preparing this review. Once a list of relevant articles was
selected, a “snowballing” technique was used to discover the additional literature listed in
the initially retrieved articles. The selection criteria to identify relevant articles within the
scope of this review were as follows: (1) current state-of-the-art biosensors” applications in
the meat chain and (2) a focus on prospective biosensors’ use in the meat production chain,
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within the regulatory framework for the monitoring of animal health, animal welfare, and
meat safety and quality.

3. Overview of Different Biosensor Types

Biosensors in the meat production chain are specialized devices designed to detect
biological or chemical changes, enabling the monitoring of meat safety and quality at
various stages, including the detection of animal health and welfare and applications
in food crime and food fraud control. As shown in Figure 1, biosensors can operate
using various detection principles, including optical, piezoelectric, magnetic, acoustic,
electrochemical, thermal, and others. The selection of the detection method is influenced
primarily by the specific purpose of the biosensor, as well as factors such as the sample type,
required specificity, accuracy, and detection limits. Additionally, signal enhancement layers
composed of different nanomaterials, nanoparticles, and polymers or their combination can
be used to improve sensor performances, resulting in the better binding of biomolecules and
an improved specificity or selectivity of the sensor, etc. Biosensor characteristics are also
determined by the sensor manufacturing technology itself. In recent years, thanks to the
development of modern micro- and nanotechnologies and new materials and microfluidics,
a number of new biosensor solutions have been published in the literature, which, in
addition to the biosensor element itself, include the integration of these sensors into
complex POC and LOC systems, which integrate filtration, separation, reagent mixing,
pre-concentration, amplification, and electronic read-out on the same portable device [4,5].
While numerous devices have been developed for applications across the meat chain, this
section focuses on the most commonly used transducer techniques, given their widespread
applicability and relevance. In this section, both the working principle of these sensors
and their fabrication technology are explained, together with a comprehensive overview
of the general applications of different biosensor transduction principles throughout the
F2F continuum, highlighting their roles in ensuring safety, quality, and traceability in
meat production.

3.1. Electrochemical Biosensors

Electrochemical (EC) biosensors are a class of analytical device that convert chemical
reactions into electrical signals, enabling the detection of specific analytes with a high
precision [39,40]. EC biosensors integrate a biological recognition element with an EC trans-
ducer electrode to detect targeted analytes. These recognition elements can be ion-selective
membranes or biomolecules that interact selectively with the target analyte immobilized on
an EC sensor, initiating a biochemical reaction. EC biosensors commonly operate based on
one of the following three detection techniques: amperometry (measures current changes
resulting from redox reactions involving the analyte), voltammetry (monitors the potential
differences between electrodes caused by ionic interactions), or impedimetric detection
(variations in the electrical impedance of the sensor interface upon analyte binding). These
approaches enable highly sensitive measurements, even at trace levels. EC biosensors are
highly valued for their sensitivity and rapid response, making them indispensable tools
in food safety applications. The specificity of EC biosensors is derived mainly from the
biological recognition element. Enzyme-based biosensors, for instance, utilize catalytic
reactions to produce electroactive species detected amperometrically [40]. Immunosensors
leverage antibody-antigen binding to trigger changes in impedance or potential, while
DNA biosensors detect hybridization events by measuring electron transfer [39]. Fur-
thermore, EC sensors are advantageous from a manufacturing perspective due to their
relatively simple and cost-effective fabrication processes, which allow for mass production
using techniques like screen printing, inkjet printing, and sputtering. Additionally, their
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miniaturization potential enables the development of planar, portable, and disposable
sensors, enhancing their accessibility and ease of use in various applications. However,
they can be sensitive to interference from complex sample matrices and may have a limited
stability over prolonged use.

Recent advancements in nanotechnology have further enhanced EC biosensors” de-
tection capabilities. Nanomaterials, such as graphene, carbon nanotubes, and metallic
nanoparticles, are often incorporated into the sensor design to enhance the signal on the
transducer [41,42]. These materials provide a high surface area, enhance electron transfer
rates, and improve signal-to-noise ratios, enabling the detection of analytes at extremely
low concentrations.

In the food industry, including the meat production chain, EC biosensors can be crit-
ical for ensuring the safety and quality of the raw material and final product. They are
widely used to detect pathogens, toxins, allergens, and chemical residues in meat/meat
products [43,44]. Nowadays, portable EC sensors have gained popularity for real-time mon-
itoring in food production, storage, and distribution, ensuring compliance with regulatory
standards [45]. Furthermore, enzyme-based electrochemical biosensors are being increas-
ingly used to monitor freshness indicators, such as biogenic amines in meat products [46],
while continuous quality monitoring throughout the supply chain can be realized using
biosensors on smart packaging [47]. Moreover, EC biosensors have been developed for the
detection of nutritional value, providing information about adulteration [48], nanomaterial-
based EC sensors have been developed for the detection of antibiotics in pork and chicken
meat [49], and EC biosensors have been developed for pathogens with magnetic-labeling
nanoparticles for the detection of E. coli [50].

3.2. Optical Biosensors

Optical biosensors offer a high sensitivity and the ability to detect analytes without the
need for labels, making them ideal for real-time, in situ analyses in various applications such
as food safety and environmental monitoring [51]. They use light-based detection methods,
such as color changes, fluorescence, surface plasmon resonance, and refractive index
changes, to monitor biological interactions. The interaction of light with biomolecules in
the analyte is generally expressed with changes in reflection, transmission, and absorption,
which enable the development of various optical biosensors. Among the simplest optical
biosensors are colorimetric biosensors. Their detection principle is directly related to
changes in color, which can be observed by the naked eye or with the detector [52,53].
This is also one of the oldest detection methods used for routine food analysis, since the
freshness and quality of the food can be directly monitored with color changes.

Another class of optical biosensors encompasses fluorescence biosensors, which use
fluorescence to detect biological molecules, such as pathogens, drugs, and toxins [54].
Fluorescence biosensors work by binding the target molecule to a fluorescently labeled
probe, which results in changes in the fluorescence intensity or emission wavelength of the
probe. The essential components of fluorescence biosensors are an excitation light source
(such as light-emitting diodes/LEDs or lasers), fluorophore molecules that mark target
biomolecules, and a photodetector that captures the fluorescence intensity and spectrum.
The major advantage of these fluorescence biosensors is their high sensitivity and selectivity,
allowing for the detection of low concentrations of target analytes with minimal interference.
Additionally, fluorescence biosensors can be used for fast, real-time monitoring in complex
samples without the need for extensive sample preparation or labeling.

Photonic biosensors utilize light-based technologies, such as interference, diffraction,
and resonance, to detect biological interactions and analytes with a high sensitivity and
precision. Most photonic applications are in the visible and near-infrared light ranges,
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albeit spanning all technological uses of light over the whole spectrum [55]. Photonic
biosensors can be fabricated on a substrate with a low refractive index and low thickness,
using silica or polymer materials, or in the form of optical fibers. Most familiar types of
photonic sensors are based on optical fiber technology, where optical fibers are used to
detect biological molecules [56]. These sensors typically consist of a fiber-optic waveguide,
a sensing region, and a detection system.

Surface plasmon resonance (SPR) is a phenomenon in which light interacts with a
metal film or metallic nanoparticles to produce a strong confinement of the electromagnetic
field intensity. This confinement enhances the interaction between light and the target
molecules, making the measurement more sensitive. An SPR biosensor works by shining
light onto a metal film or nanoparticle and measuring the angle of minimum reflection,
also known as the angle of maximum absorption. The fabrication of SPR sensors can be
complex and challenging, as it requires the precise control of nano-scale metal structures
on a substrate. These metal structures must be of the correct size, shape, and orientation to
allow for the efficient excitation of surface plasmons, which is the key to the high sensitivity
of SPR sensors, but also the main disadvantage of this type of biosensor. One of the key
advantages of SPR biosensors is their high sensitivity, which enables the detection of trace
amounts of biological molecules. SPR has found a wide range of applications, including
detection in animal healthcare, food inspection, and allergen detection [57,58].

Surface-Enhanced Raman Spectroscopy (SERS) sensors are a type of photonic biosensor
that utilizes the unique optical properties of nanostructured materials to enhance the Raman
scattering signal from analytes. SERS is a highly sensitive analytical technique that can
detect trace amounts of chemical species, making it an attractive technology for various
sensing applications, including in the field of animal welfare and healthcare [59,60]. Since
spontaneous (normal) Raman scattering is typically very weak, Surface-Enhanced Raman
Spectroscopy employs a special technique to enhance the Raman scattering by molecules
adsorbed on a specific medium or interface to improve the sensitivity. The key advantages
of SERS sensors are their high sensitivity and versatility. SERS can be applied to a wide
range of substrates, including surfaces, fibers, and nanoparticles, and can be integrated
with various imaging and sensing systems, such as optical microscopy and spectroscopy.

Optical biosensors offer a high sensitivity, fast response times, and label-free detec-
tion, making them highly effective for real-time monitoring. Their fabrication involves
advanced techniques such as photolithography, electron-beam lithography, and nanoim-
printing, which allow for precise control over sensor properties, but can increase production
complexity and cost. In addition, thin-film deposition techniques such as sputtering, evap-
oration, and chemical vapor deposition are also commonly used to create biosensitive
optical layers with tailored properties. While their miniaturization enables portability, their
integration with optical components can be challenging, requiring specialized equipment
for signal detection and processing. Moreover, environmental factors such as temperature
fluctuations and light interference can affect their stability and accuracy.

In summary, colorimetric sensors are widely used in the meat industry for the rapid
and cost-effective detection of spoilage, contaminants, and quality indicators such as pH,
ammonia, and biogenic amines [61-63]. Their main advantages include easy visual inter-
pretation without the need for complex instrumentation, real-time monitoring capabilities,
and the potential for integration into smart packaging for the continuous assessment of
meat freshness. Some additional examples include SPR sensors used for detecting food-
borne pathogens such as Salmonella and E. coli by monitoring refractive index changes
upon biomolecular binding [64,65], fluorescence-based biosensors for the detection of
meat freshness markers [66], and Raman-spectroscopy-based sensors to provide molecular
fingerprinting for the identification of adulterants, such as the presence of unauthorized
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additives or the mislabeling of meat species or mycotoxins [67,68]. Additionally, optical
fiber biosensors have also been employed for detecting antibiotic residues in meat, offering
a high sensitivity and real-time analysis [69], while different types of optical sensors have
been used in meat authentication (the detection of meat species), thus helping to prevent
food fraud [30].

3.3. Field-Effect Transistor (FET)-Based Biosensors

An FET-based biosensor is a type of label-free biosensor where the bio-interaction is
directly converted into an electrical signal, measurable by a suitable instrument [70-72].
Speaking traditionally, FETs are semiconductor-based devices that consist of the following
three main terminals (electrodes): source, drain, and gate. The current flow in an FET is
controlled by an electric field, established by the gate potential, and such flow takes place
in an FET channel, which is the most important part of FET-type biosensors. Additionally,
the fourth terminal in an FET is a body or substrate, which is needed to bias the transistor
into operation [73]. There are numerous types of FETs, classified mainly by the nature of
the channel, material used, or the physical principle of the operation. Biosensors that work
on the FET principle (BioFET—Dbiologically sensitive FET) demand slight changes in the
standard structure of an FET. Namely, the most efforts are directed to channel modification
in order to enable unprecedented performances in sensing that are not achieved with some
traditional detection techniques. The incorporation of a wide spectrum of nanomaterials
has opened the door to increased FET-based biosensor interest and research, especially
wuth two-dimensional (2D) materials [74-76]. These 2D-FETs can operate in the following
two modes concerning gate orientation: back-gate (solid-gate) or top-gate (liquid-gate).
For biosensing, a top-gate regime is mostly used nowadays. Namely, the gate electrode is
often comparable to the standard reference electrode in an electrochemical three-electrode
system and is immersed in the electrolyte of interest or colinearly fabricated on the body
of the FET. In this configuration, an insulation layer is formed upon the application of
gate voltage in the form of a so-called electrical double layer, which serves as a capacitor
at the solid /liquid interface with a thickness of several nanometers and a capacitance of
several orders of magnitude higher than induced back-gate capacitance. Likewise, the
liquid-gate configuration makes the conductivity of the channel more sensitive to specific
interactions [77]. Two-dimensional materials are very sensitive to charge redistribution
in the vicinity of their surface; with integration into an FET arrangement, the electrical
properties are very susceptible to such redistribution. Consequently, channel materials
are tuned with specific biorecognition elements to make biosensors specific to certain
target molecules [78].

FET-based biosensors offer an exceptional sensitivity due to their ability to detect
minute changes in charge distribution upon target binding, making them highly effective
for real-time analysis. Their fabrication involves advanced semiconductor processing
techniques, such as nanolithography and the deposition of nanomaterials like graphene or
silicon nanowires, which enhance performance but increase production complexity and
cost. While FET biosensors provide rapid, label-free detection with low sample volume
requirements, they can be prone to signal drift, interference from ionic strength variations,
and stability issues over time. Despite these challenges, their miniaturization potential,
compatibility with integrated circuits, and low power consumption make them suitable for
portable and high-performance biosensing applications.

Nowadays, the application of portable sensing devices to track animal welfare and
health parameters is a practice [79]. However, using wearable FET devices in animal health
monitoring has not been well exploited. Although FET-based biosensors with various
functional nanomaterials for a high sensitivity and reproducibility show an excellent
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potential for the detection of different biomolecules in other applications, only several
applications in the meat chain are available in the literature. For example, aptamer-based
FET biosensors with a carbon nanotube were developed to detect pathogenic bacteria [80]
and aflatoxin B1 [81]. In addition, an FET e-nose biosensor was developed for meat product
freshness control [82].

3.4. Piezoelectric Biosensors

Piezoelectric sensors offer a high sensitivity, fast response, and the ability to detect very
small changes in mass, making them ideal for biosensor applications. The manufacturing
technology of piezoelectric sensors is relatively simple and can use materials such as
quartz, allowing for integration with other systems and reduced production costs. A
growing interest in the field of biosensors is devoted to the development of quartz crystal
microbalance (QCM) biosensors. This type of biosensor utilizes quartz crystal resonator
technology to detect and analyze biomolecules based on changes in the mass of a sensing
layer due to the binding of analytes. This highly sensitive and label-free approach offers
real-time detection using a portable system with basic data analysis. QCM operation is
based on the piezoelectric effect in a quartz crystal, where changes in mass on the crystal
surface cause shifts in its resonant frequency. When a substance adsorbs onto the crystal
surface, the added mass alters the vibration frequency of the crystal. This frequency change
is directly proportional to the amount of mass. The proposed QCM solutions are usually
based on a gold substrate that is modified with a biorecognition element like immobilized
antibodies, nucleic acid probes, or synthetic molecularly imprinted polymers (MIPs), which
are also known as artificial antibodies, for specific detection in a complex analyte [83].
QSM biosensors are typically fabricated using microfabrication techniques such as thin-
film deposition, photolithography, screen printing, and electroplating to create the quartz
crystal, electrodes, and sensing layers. Although QCM can detect very small changes in
mass, piezoelectric sensors can be susceptible to accuracy degradation in environments
with significant temperature or humidity fluctuations, as these factors can affect frequency
changes. Additionally, the specificity of piezoelectric sensors may be limited in cases where
differentiation between similar molecules or substances is required.

Recent studies in the field of QCM biosensors have focused on applying nanomaterials
for sensing and improving sensors’ sensitivity [84,85]. In the meat industry, QCM sensors
functionalized with aptamers have been used to detect pathogens in meat [86], fever viruses
using an MIP layer [87], for drug detection [88], or to detect meat adulteration [89]. While
QCM biosensors have shown promise in the detection of pathogens and other quality
indicators, the sensitivity of QCM biosensors can be affected by the matrix in which the
analyte is present. Components such as fats and proteins can interfere with the binding of
the analyte to the sensing layer, resulting in a reduced sensitivity and accuracy.

3.5. Surface Acoustic Wave Biosensors

Surface acoustic wave (SAW) biosensors utilize the interaction between an electrical
signal and surface acoustic waves to detect changes in the environment. SAW biosensors
operate by generating acoustic waves on the surface of a piezoelectric material, where
any mass changes or interactions on the surface affect the wave’s velocity or amplitude.
These changes are then measured and correlated with the presence or concentration of
the target analyte, offering a high sensitivity and real-time detection capabilities. These
sensors have gained popularity due to their high sensitivity and small size, making them an
attractive choice for a wide range of applications [90,91]. SAW sensors are fabricated using
piezoelectric materials like quartz or lithium niobate, where interdigital transducers are
patterned onto the surface using photolithography or thin-film deposition techniques. The
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fabrication process involves precise control of the electrode patterns and the integration
of the sensing layers to ensure a high sensitivity and stability. Ongoing research efforts
are focused on improving the performance of SAW sensors, including increasing their
sensitivity and expanding their range of detectable analytes. The application of these
sensors in the farm-to-fork continuum is still rare. SAW sensors have been developed to
evaluate chicken meat storage time [92], for haptoglobin detection in unpurified meat juice
from slaughtered pigs [93], and for pathogen detection [94].

3.6. Magnetic Relaxation Switching Biosensors

Magnetic relaxation switching (MRS) biosensors are a promising technology that has
gained significant attention in recent years for its ability to detect target biomolecules
with a high sensitivity and selectivity [95]. MRS biosensors use functionalized magnetic
nanoparticles that bind to the target biomolecules and measure changes in the magnetic
field. These changes are detected using an external magnetic field, providing a highly
sensitive and quantitative read-out of the target biomolecule concentration. Detection
devices for MRS biosensors typically include highly sensitive magnetometers, such as
superconducting quantum interference devices or vibrating sample magnetometers, which
measure the changes in the magnetic field caused by the interaction of magnetic nanopar-
ticles with the target analyte. This technology offers a high sensitivity and selectivity
due to the unique magnetic properties of the nanoparticles, but its fabrication process
can be complex, requiring precise control over nanoparticle synthesis, functionalization,
and sensor integration. While MRS biosensors provide excellent detection capabilities in
complex samples, their manufacturing complexity and the need for specialized equipment
can limit their widespread application. Recently proposed MRS biosensors in the literature
demonstrate very sensitive detection performances for low concentrations of pathogens
in meat samples [96,97], as well as forbidden substances and residues related to drugs for
animal treatments [98], and toxin detection [99].

4. Application of Biosensors in the Meat Chain Continuum

Biosensors play a crucial role in enhancing safety, quality, and efficiency within the
meat supply chain. The application of biosensors in the meat chain spans all modules in
the F2F framework, ensuring that meat products are safe, of a high quality, and traceable
throughout the entire continuum. Multiple of their applications in the meat production
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4.1. Animal Health

In recent years, biosensors have been increasingly applied in the monitoring of animal
health and welfare, including reproductive and nutrition status. As biosensors can provide
real-time and reliable data on various biomarkers that indicate the general and specific
health statuses of farm animals [2], they represent a powerful tool to help in the early
detection of diseases, as well as the management of chronic conditions. Examples of the
applications of such biosensors in the animal health sector are given in the sections below.

4.1.1. Detection of Disease Markers

Blood Glucose Levels. Biosensors enable continuous glucose monitors (CGMs) and can
be used for diabetic animals or those at risk of metabolic disorders (e.g., cetosis) [100,101].
Different enzymatic sensors have been proposed in the literature [102], while some commer-
cial solutions are already available on the market for veterinary use [103]. Early information
on blood glucose levels can help in adjusting nutrition regimes in a timely manner, as well
as the farm environment to prevent the occurrence of metabolic disorders.

Hormonal Levels. Cortisol and/or Chromogranin A (CgA) sensors can monitor
the stress levels in animals, which can indicate welfare issues or the presence of dis-
ease [2,27,104]. Further, information on the levels of specific stress hormones can also
provide insights into farm husbandry practices and valuable data for the prediction of
meat quality traits in further processing, also by using non-invasive methods [104], such as
the detection of glucocorticoids using non-invasive sample materials like saliva, excreta,
milk, hair/feathers, and eggs [105]. Recently, an EC immunosensor with antibodies and
aptamers as its bioreceptors was proposed to monitor cortisol levels [106,107], including
different optical sensors that can be efficiently applied in animal welfare for the tracking of
stress levels by on-site measurements of stress-related metabolite levels or sensors for the
detection of hormones such as cortisol molecules at concentrations as low as 2 ng/m, as
well as other hormones important for the reproductive cycle (progesterone, testosterone,
and 173-estradiol) in urine [108,109]. Further, EC biosensors have been also used for the
detection of animal hormones in food, including meat [110]. A comprehensive review
regarding the detection of various metabolites and biomarkers in cattle was published,
outlining biosensors for the diagnosis of noncompliant pH, dark cutting beef predisposi-
tion, and welfare [111]. Wearable sensors have also been extensively used for monitoring
animal welfare in disease detection [112], where, for example, tattoo-based biosensors were
utilized to monitor the metabolites in interstitial fluid, such as pH, glucose, and albumin
concentrations, using minimally invasive, injectable skin biosensors [113].

Inflammatory Markers. Biosensors can measure the levels of acute-phase proteins (e.g.,
C-Reactive Protein or haptoglobin), which gives information on inflammation, infection,
and injury, as well as cytokines (TNF-alpha and IL-6), which are indicators of immune
response and inflammation in animals. Namely, poorly managed farm biosecurity may
lead to the occurrence of different acute and chronic disease conditions in food-producing
animals (e.g., cattle, pigs, and poultry) [114] induced by a variety of pathogens of viral
and bacterial origin, provoking a range of respiratory, gastrointestinal, skin, and udder
infections (e.g., rotavirus infections, bovine respiratory disease, bovine viral diarrhea, avian,
pig of bovine influenza, mycoplasmosis, salmonellosis, colibacillosis, staphylococcosis,
mastitis, etc.) [115-117]. Early information on specific acute-phase proteins (APPs) may
contribute to assessing the general health status of animals, including unnoticed subclinical
conditions, thus preventing the further aggravation of disease conditions and/or carrying
out timely therapeutic protocols [5,104]. For example, a biosensor detecting a specific
APP such as haptoglobin (Hp) can provide real-time information on mastitis in milking
cows [118], inflammation/infection or trauma in beef and dairy herds [119], and the future
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development of biosensors able to detect Pig-Major Acute Proteins (Pig-MAPs) important
for revealing infection with H3N2 swine influenza virus or other inflammatory conditions
in pigs [114,120,121].

Metabolic Markers. The monitoring of selected markers associated with the metabolism
of animals can be conducted by biosensors. For example, biosensors may provide useful
information for the diagnosis of disease by the detection of VOCs from animals’ breath,
blood, faeces, skin, urine, and vaginal fluids [2]. Breath metabolites are composed of gases
(e.g., hydrogen and methane) and fatty acids, which all can be used as specific biomarkers
for the detection of certain metabolic and pathologic processes. For example, a higher level
of glucose in the blood is detected by the presence of specific VOCs, e.g., ketones, ethanol,
and methanol [122]. In livestock, these biosensors can accurately identify bovine respiratory
diseases (BRDs) [123], brucellosis [124], bovine tuberculosis [125], Johne’s diseases [126],
ketoacidosis [127], and even Foot and Mouth (FMD) disease [128]. Other biosensors enable
the salivary detection of metabolites, such as the level of uric acid, high levels of which
may be correlated with metabolic syndrome, renal syndrome, or physical stress [129] and
provide the detection of perspiration metabolites such as the concentrations of sodium and
lactate in sweat, also giving information about animal welfare (e.g., physical stress) [130].

Disease-associated pathogens. There have been recent developments in biosensors able
to detect specific biomarkers from animals’ fluids and tissues, providing valuable input
needed for diagnostic procedures for respiratory, gastrointestinal, and other diseases.

For cattle, biosensors have been developed as a diagnostic method for bovine res-
piratory disease (BRD), with a high sensitivity and specificity to the anti-IgE present in
commercial anti-BHV_1 (Bovine Herpes Virus-1/BHV-1, the wild-type virus cause of BRD)
and in real serum samples from cattle [117,131]. Another sensor was developed to detect
virus-provoking bovine viral diarrhea (BVD) from a cattle serum sample, with a very short
detection time of only 8 min and a limit of detection (LOD) of 103 CCID/mL [116]. Based on
the SPR phenomenon, a biosensor able to detect bovine leukemia virus (BLV), a causative
agent of Enzootic Bovine Leucosis (EBL), was developed [132], as well as a biosensor for
FMD detection, which included a lateral flow immune-chromatographic platform for the
detection of antibodies against FMD proteins [128]. An in-field aptamer-based biosensor
was developed for the detection of bovine mycoplasma (M. bovis) [133], a disease severely
affecting the health of cattle and provoking bronchopneumonia, mastitis, and arthritis.
Further, an online sensing system enabling an automated California Mastitis Test (CMT) in
milk has been developed [134], as well as a biosensor for the detection of mastitis based on
acute-phase proteins (haptoglobin) [135]. Further, a biosensor for the detection of prion
protein (PrPC)-causing Bovine Spongiform Encephalopathy (BSE) and Creutzfeldt-Jakob
disease in humans and scrapie in sheep has been developed [136], as well as a sensor for
the detection of Campylobacter in dairy livestock, based on magnetic beads functionalized
with a C. jejuni aptamer, which uses magnetic separation to isolate and enrich C. jejuni from
samples, with a detection range of 10~10” colony-forming units (CFU)/mL and an LOD
of 3 CFU/mL [137].

For pigs, different sensing systems are available, such as a quartz crystal immunosensor
for the detection of African Swine Fever virus (ASFV) developed in 1998 using diluted pig
sera samples [138], as well as a nanoplasmonic biosensor involving p30-protein-specific
label-free integration into standard 96-well plates, able to detect ASFV in 20 min [139],
which was proven in an in vitro environment, and colorimetric sensors or aptamer-based
sensors for the detection of porcine reproductive and respiratory syndrome virus (PRRSV),
respectively [140,141]. This is an important disease occurring on large-scale commercial
pig-fattening farms that causes serious impacts on livestock farms worldwide. In addi-
tion, a range of photonic (optical) integrated-circuit (PIC) biosensors based on antibody
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(monoclonal)-antigen reactions were developed within the SWINOSTICS project—Swine
diseases field diagnostics toolbox (https:/ /cordis.europa.eu/project/id /771649 /results,
accessed on 6 January 2025) for the multiplex detection of the six most important endemic
and emerging viruses occurring in the pork production chain, including ASFV, Classi-
cal Swine Fever Virus (CSFV), PRRSV, Porcine Parvovirus (PPV), porcine circovirus 2
(PCV2), and Swine Influenza Virus A (SIV) [142,143], as well as a photonic sensor for
the detection of porcine circovirus 2 (PCV2)-causing porcine circovirus-associated disease
(PCVAD) associated with attacks on lymphoid tissues and consequent immunosuppression
in pigs [144].

For poultry, an impedance immunosensor based on the detection of avian influenza
(bird flu)-associated immobilized H5N1 antibodies, providing an LOD of 10% EIDsg /L.
(EID50: 50% Egg Infective Dose), was developed [115], as well as a biosensor for detecting
and differentiating between avian and human influenza viruses [145]. The importance of the
regular and wide-based application of such biosensors can be crucial in the monitoring and
early detection of avian influenza, not only in poultry flocks, but also in dairy cattle, taking
into consideration the recent first-ever recorded transfer of bird flu to cattle, provoking a
multistate outbreak of Highly Pathogenic Avian Influenza (HPAI). This disease (H5N1) in
dairy cows was recently reported in the USA [146]. A biosensor containing mammalian
cells as sensing elements able to detect enterotoxins of Clostridium perfringens (A, B, C, D, E,
NetB, and CnaA) causing necrotic enteritis in broiler chickens, which is associated with
significant economic losses in the global poultry industry due to high mortality rates, as
well as provoking foodborne disease in humans due to the sporulation of pathogens and
the development of toxins, has been proposed [147]. Further, a three-mode biosensor with a
ratiometric design (electrochemical / colorimetric and electrochemical/ photothermal) based
on DNA-driven magnetic beads (DMBs) has been developed to detect C. perfringens with a
very low LOD of only 0.26 and 0.27 1g/CFU in samples in real operational environments,
enabling its use in food safety and environmental monitoring [148]. Sensors based on
SPR technology, which can accurately detect antibiotic residues (e.g., fluoroquinolones
and sulfonamides) in chicken muscle and blood serum, are also available [149]. Although
confirmatory methods for antibiotic residues depend on liquid chromatography-mass
spectrometry (LC-MS) or a combination of liquid chromatography and an ultra-violet
detector (LC-UV) to determine the exact concentration of an analyte, biosensors can be
effectively used for screening purposes (semi-quantitative measurements) [150] and serve
as a very practical solution when there is a need for the large-scale detection of antibiotic
residues in animals in the farm-to-slaughterhouse continuum [149].

4.1.2. Monitoring Reproductive Health

Hormone Levels. Sensors can detect the levels of hormones like progesterone and
estrogen, which are critical in monitoring reproductive cycles and identifying fertility
issues. The reproductive management of dairy herds is of great importance for the dairy
industry, with missed estrus detection representing a main cause of economic losses. In the
early stages, a biosensor using an enzyme immunoassay format for molecular recognition
was developed with a read-out time of 8 min [151]. The gold standard is the detection of
progesterone, a hormone important for the reproductive management of dairy cows, based
on antibodies, biosensors for which are expensive and often difficult to procure on the
international market. In response to this, an affordable transcription-factor-based sensor
has been developed in a portable paper-fluidic format to serve the accurate and rapid
detection of progesterone [152]. Another solution is a microbially derived biosensor as an
affordable, real-time sensor device able to detect progesterone in urine [153]. In addition, a
fungal biosensor for the detection of estrogen activity in cows and pregnancy diagnosis,
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based on a modified strain of the filamentous fungus Aspergillus nidulans, was developed,
after successful validation with blood, urine, feces, milk, and saliva; it had a specificity of
100% and a sensitivity of more than 97% in milk, urine, and feces [154]. Other examples are
biosensors for the detection of mycotoxins in cow’s milk, such as bioluminescent whole-cell
biosensors for the detection of zearalenone family mycotoxins, allowing for detection in
less than 3 h, based on the fat content in milk, providing an excellent screening device [155].
Other developed ‘mycotoxin biosensors’ based on nanomaterials for the determination of
mycotoxins such as endocrine disruptors (EDMs) are also available [156], such as aptamer-
based ones with LODs of 0.93 pg/mL [157], 0.17 pg/mL [158], and 2 pg/mL [159], as well
as an antibody-based sensor with an LOD of 0.1 pM [160].

Estrus detection. The detection of estrus in animals is a crucial issue of high economic
importance to farmers in livestock management to optimize reproductive efficiency and
productivity. Standard sensor solutions are based on monitoring vaginal conductivity and
temperature, while wearable solutions placed in the ventral tail to acquire data such as
surface temperature, behavior, and ovulation can also be used [161]. Unfortunately, these
solutions can only be confirmed at a rate of 50-60%, which is lower than that obtained
using a biosensor. Therefore, a metal oxide electronic nose biosensor was developed
to detect estrus based on odor release from the perineal headspace in dairy cattle by
direct sampling [162], as well as a biosensor to track the bovine estrous cycle by online
measurements of milk progesterone [163].

Sperm Quality. Animal sperm quality assessment is crucial for reproductive success in
livestock and wildlife management. A microfluidic biosensor with a portable microscopic
imaging system was designed to predict the reproductive ability of livestock [164]. Al-
though methods based on counting and micro-imaging systems have demonstrated a high
accuracy in detecting sperm survival rates and a fast detection time [165], recent advance-
ments have led to the development of biosensors that evaluate sperm parameters such as
motility, viability, and morphology, which are important markers in breeding programs.

4.2. Animal Welfare

The application of biosensors enables the early detection of animal welfare is-
sues, including the detection of stress (impact on health and meat safety and quality),
such as biosensors able to detect cortisol levels in animal blood (serum), saliva, or
urine [106,107,109], as described above. This ensures that animals are raised on farms,
transported to livestock markets or slaughterhouses, and processed (slaughter and dress-
ing) under conditions that minimize stress and suffering. These technologies facilitate
humane handling practices and support regulatory compliance and consumer transparency.
As biosensor technology continues to advance, its role in promoting higher animal welfare
standards in the meat industry is likely to grow, benefiting both animals and the industry.
Examples of biosensor applications in animal welfare monitoring are given below.

4.2.1. Behavioral, Physiological, and Nutrition Status Monitoring

Animal Interstitial Fluid. The recent emergence of biosensors has enabled the detection
of internal physiological factors as a component of strategies to improve animal welfare.
Such an approach is dependent on the monitoring and accurate detection of specific
traits (e.g., fluctuations in animal interstitial fluid) to understand the physiological and
behavioral changes occurring in animals. With reference to this, a WAIT4 (Welfare: Artificial
Intelligence and new Technologies for Tracking Key Indicator Traits in Animals Facing
Challenges of the Argo-ecological Transition) has been implemented with the aim to
increase the technical possibilities to assess animal welfare status. A new sensor has been
proposed to assess the kinetics of key physiological variables (Na*, K*, and pH) in animal
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interstitial fluid by microneedle patches, while the acquired data are to be analyzed and
interpreted by machine learning algorithms in relation to animal welfare [166].

Saliva. The monitoring of lactate levels in animal saliva can be an indicator of stress
level, as well as the health status of animals. Nowadays, microfluidic sensing systems
based on materials such as carbon nanotubes and graphene have become popular among
animal handlers and farm owners for enzymatic uric acid detection in saliva, detecting
lactate variations, and fluoride detection [167].

4.2.2. Transport and Handling

Stress Monitoring During Transport. Transport is a critical point within the meat chain
where animal welfare can be compromised due to poor conditions related to factors such
as watering, feeding, air flow, rest, load density, a high or low temperature, humidity, etc.,
in a vehicle transporting animals from farm to the livestock market and/or slaughterhouse.
Nowadays, besides standard sensor solutions for the measurement of the heart rate and
skin temperature of animals and the environmental conditions within transport vehicles,
biosensors are widely used as stress indicators [167-169]. Salivary biomarkers are generally
used to detect cortisol, which evaluates the hypothalamic—pituitary—adrenal axis, salivary
alpha-amylase (sAA) [170], and CgA, which are related to the autonomous nervous sys-
tem [171], and total esterase (TEA) and some of its components such as salivary lipase (sLip)
and butyrylcholinesterase (BChE), which are enzymes that have been related to situations
of pain and discomfort [172].

4.2.3. Pre-Slaughter Welfare Assessment

Biosensors can assess the physical and emotional state of animals before they are
slaughtered, as well as monitor the handling practices in slaughterhouses (the unloading
of livestock after transport, stay in lairage/pens, and stunning procedure), ensuring that
animals are treated humanely and in accordance with welfare standards to verify human
handling practices. The application of biosensors may also contribute to ante mortem ex-
amination, a component of the meat inspection system, carried out by official veterinarians.
Monitoring parameters like cortisol levels using biosensors in combination with heart rate
can help to ensure that animals are calm and not experiencing unnecessary stress, which is
important for both welfare and meat quality [104,173], while an increased body temperature
may relate to the animal’s health condition. Such an application of biosensors may also add
to a more automated ante mortem clinical examination of animals intended for slaughter
and increase the relevance of meat inspection by providing accurate food chain information
(FCI) data that can be used for risk assessment in the farm-slaughterhouse continuum.

4.2.4. Application in Precision Livestock Farming

The application of biosensors in large animal populations in intensive commercial
farming has excellent potential. Some biosensor applications within the precision livestock
farming (PLF) system include the examples given below.

Early Disease Detection. Biosensors can be used to detect early signs of disease in large
herds, allowing for timely interventions. For example, a proactive approach related to the
application of biosensors for the detection of disease outbreaks through farm wastewater-
based epidemiology (WBE) was recently proposed to collect comprehensive environmental
and public health data to assist in timely health interventions during the COVID-19 out-
break [174]. Such an approach can also be a novel solution to monitor animal health on
farms using wastewater discharge to detect the presence of disease-causative agents, which
should allow for timely interventions either to maintain the health of food-producing
animals or monitor fecally associated discharges of pathogens/AMR genes to prevent the
cross-contamination of the environment. Another approach is the possibility of detect-
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ing animal infectious diseases and/or pathogens of high public health importance using
nano-based biosensors [2].

In all, there is a good perspective associated with the use of biosensors in animal health
and welfare monitoring within PLF systems, since they offer numerous advantages, such
as non-invasive or minimally invasive approaches, providing real-time data for farmers
and veterinarians, which are crucial for the early detection of animal health and welfare
status and targeted interventions. The data acquired through regular applications of
biosensors enable the continuous monitoring of selected health and welfare parameters of
food-producing animals on farms and their integration within data management systems,
allowing for automated health monitoring and analysis. The major challenges for the
introduction of sensors into regular monitoring schemes for animal health are related to
biosensors” accuracy and calibration to provide reliable data, since they encompass animals
wearing or being implanted with biosensors, as well as the costs and scalability to deploy
them across large populations of animals.

4.2.5. Slaughterhouse and Meat Processing

Post-Slaughter Indicators. Monitoring selected biochemical markers post-slaughter
can provide information on whether animals were stressed or ill before slaughter,
namely for animal welfare (e.g., stress hormones, such as Cortisol, and Cg A) and
general animal health status (e.g., acute-phase proteins, such as haptoglobin, and Pig-
Major Acute Proteins—MAP), which can be used to improve welfare practices and
farm biosecurity [104].

Pathogen detection. Foodborne pathogens can enter the meat chain at various and
multiple points along the F2F continuum, including during slaughter, processing, pack-
aging, and distribution (Figure 2). Contamination with these pathogens poses serious
health risks to consumers, including foodborne illnesses that can lead to severe outcomes
or even fatalities. In the meat production chain, biosensors can be applied at various
stages, from the prevalence of foodborne pathogens on farms and raw material inspection
to the testing of the final product, enhancing the ability to quickly detect contamination
and enabling timely responses (e.g., control measures and corrective actions). This helps
in preventing outbreaks of foodborne illnesses and maintaining consumer trust in meat
products. Biosensors operating with different transducing principles are being increasingly
used for detecting foodborne pathogens and contaminants, ensuring food safety and public
health. They can identify pathogens such as Salmonella, E. coli, Listeria monocytogenes, etc.,
and viruses by targeting specific proteins or DNA sequences [175-180]. Some examples
include electrochemical biosensors leveraging antibody-antigen binding or aptamer-based
approaches, which can achieve the highly sensitive detection of Salmonella or E. coli in vari-
ous food matrices [181-183], as well as phagosensors biosensors that use bacteriophages as
a bioreceptor to detect enteric bacteria in water samples, including S. typhimurium [184],
biosensors for the detection of S. typhimurium in eggshells [185], and biosensors based
on antimicrobial peptides as a bioreceptors for Salmonella detection by electrochemical
impedance [186]. Different optical biosensors, including fluorescent and colorimetric, have
been proposed as well, including aptasensors, which are fluorescently labeled to enable the
detection of E. coli [187], antibody-based nano biosensors used to enable the highly sensi-
tive detection of E. coli in food and water samples [188], and colorimetric sensors for food
(milk) samples [189]. Further, a reusable sensor based on QCM technology with antifouling
nanocoatings on the sensing surface for the accurate detection of E. coli in liquid (milk) or
solid (hamburgers) food samples [190], FET platforms for the detection of Gram-positive
and Gram-negative bacteria species, such as a multiplex detection biosensors based on an
organic FET for the detection of two types of Gram-positive and -negative bacteria [191], a
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nanozyme-mediated MRS DNA biosensor for the rapid detection of Listeria monocytogenes in
chicken meat [97], and many others can be found in the literature. Recently, a newly emerg-
ing technology based on CRISPR/Cas (clustered regularly interspaced short palindromic
repeats and associated protein (Cas)) technology has received attention. CRISPR/Cas
system-based biosensors appear to have an advanced flexibility, sensitivity, and specificity,
enabling broad application and POC diagnosis in the field of environmental monitoring
and food safety (the detection of foodborne pathogens). CRISPR/Cas is a novel biological
tool, representing a variety of nucleic acid detection technologies (RNA and DNA) that
have been successfully developed and applied in medical diagnosis, life sciences, and food
safety. Such systems have a great potential, in particular, to enhance the detection of food-
borne pathogenic bacteria in the meat chain, but also in aquaculture, e.g., E, coli O157:H?7,
S. typhimuirum, S. enteritidis, L. monocytogenes, methicillin-resistant Staph. Aureus (MRSA),
and Vibrio parahaemolyticus (in aquaculture), with a detection time ranging from 15 min
to 5 h. Different fluorescent, colorimetric, and electrochemical biosensors can be based
on CRISPR/Cas technology. For example, electrochemical CRISPR/Cas-based biosensors
showed a limit of detection (LOD) as low as 10 CFU/mL. A current limitation of this
technology is that it is still in the stage of detecting only single foodborne pathogens, has
complex working procedures related to nucleic acid extraction and amplification causing
false-positive results, and cannot distinguish between live and dead bacteria. To address
these challenges, new, fit-for-purpose aptamers should be deployed to enable the differenti-
ation between live and dead bacteria, as well as the development of non-nucleic acid target
detection such as metal ions, proteins, and adenosine triphosphate (ATP) [192].

Chemical contaminants. Antibiotics are widely used as bacteriostatic agents to combat
microbial infection in animals and are almost unavoidable in the treatment of bacterial
infections. Inappropriate antibiotic drug dosages, on the other hand, may result in antibi-
otic residues in livestock and poultry products (meat, milk, and eggs), aquatic products,
and vegetables, resulting in a variety of side effects on human health. Antibiotic residues
promote the spread of antibiotic-resistant bacteria, cause allergies like penicillin, and cause
other severe pathologies such as cancers (oxytetracycline, sulfamethazine, and furazoli-
done), bone marrow toxicity, mutagenic effects, anaphylactic shock, reproductive disorders
(chloramphenicol), and nephropathy (gentamicin). Biosensors are also used for the de-
tection of chemical contaminants such as antibiotics [193,194], which is critical given the
concern about antimicrobial resistance and to ensure that meat/meat products comply
with regulatory antibiotic residue limits. Pesticides can accumulate in animal tissues
and meat [195-197], as can growth hormones used to promote growth in livestock [198],
dioxins [199], and sulfadiazine and acetaminophen [200], which can enter the meat chain
through various environmental pathways, including contaminated feed and industrial pol-
lution. Biosensors can additionally be used to detect the bioaccumulation of heavy metals
such as lead, cadmium, and mercury, which can contaminate meat through environmental
exposure [201], as well as natural toxins (mycotoxins) such as Aflatoxins, Ochratoxin A,
Fumonisins, Zearalenone, and Trichothecenes, which can accumulate in tissues of food-
producing animals due to the consumption of contaminated feed [202,203] and pose risks
to consumers’ health.

AMR detection. In the era of increasing AMR related to pathogens of public health im-
portance, including foodborne pathpgens, the rapid detection and monitoring of antibiotic
resistance in the meat production chain is of the utmost importance to control and prevent
AMR’s spread, particularly in international trade. Current methods allow for the separate
detection of either selected pathogen via traditional (culturing), immunoassay (ELISA),
and molecular methods (PCR) or antibiotic resistance genes via molecular methods such as
PCR, DNA microarray, whole-genome sequencing (WGS), and metagenomics [204], thus re-
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quiring multiple assays. Therefore, there is a need for POC devices that can simultaneously
detect pathogens (infectious agent) and their antibiotic resistance at the given module along
the meat chain. For example, in 2008, an optical, silicon-based biosensor was developed to
detect the tuf gene in blood cultures for the identification of the Staphylococcus genus, the
femB gene for the identification of S. aureus species, and the mecA gene for the identification
of methicillin resistance with an LOD =5 x 107 CFU/mL [205], as were an electrochemical
sensor to be used in bacterial cultures combining a new class of non-biological binder
molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for
the detection of Gram-positive bacteria [206] and an integrated, dual-channel electrochem-
ical biosensor for the detection of Enteropathogenic (EPEC) E. coli based on monoclonal
antibodies against a virulence marker (EspB) and markers for AMR detection (3-lactam
resistance marker and (3-lactamase) developed in [207]. The integration of biosensors can
have a profoundly beneficial impact on tackling one of the most important global public
health challenges, antimicrobial resistance, and should be conducted within the One Health
context [208] to cover the environment-animal-human ecological compartments.

4.3. Meat Quality Traits

Biosensors are being increasingly used for the rapid and accurate detection of the most
important meat quality traits, such as freshness, sensory and nutritional attributes, and
the spoilage of meat and meat products. Some examples of biosensors” applications are
given below.

Freshness and spoilage. Biosensors can measure the freshness and/or spoilage of
meat/meat products by detecting the levels of certain compounds typically associated
with the degradation of meat proteins and lipids, including purine derivatives, such as
hypoxanthine and xanthine [209], ammonia [210], trimethylamine [211], and hydrogen
sulfide [212] and food spoilage biomarkers such as volatile organic gases, microorganisms,
and enzymes [213].

Sensory and nutritional attributes. Keeping meat fresh on the journey from the slaughter-
house to the consumer is not always possible, and, therefore, the development of easy-to-use
POC devices for meat freshness can help consumers to buy meat as fresh as possible. Some
biosensors assess meat quality traits related to sensory characteristics and nutritional value.
For example, biosensors can detect visual texture, color, visible fat and natural drip in raw
meat [214], and aroma and flavor in thermally processed meat [215] by detecting changes
in specific proteins or metabolites. Some biosensors can evaluate freeze/thaw cycles for
the detection of hemin in beef samples [216]. A series of graphene FET-based electronic
noses have been developed so far for in-field and rapid food freshness evaluations un-
der refrigerator and room-temperature conditions for the detection and quantification of
olfactory compounds [217-219].

4.4. Food Fraud and Food Crime

Food fraud is a widespread global concern and is also frequently associated with meat
products. Biosensors are becoming increasingly valuable in combating food fraud and food
crime in the food (meat) production chain. Their ability to provide precise, real-time, and
reliable data helps to ensure the authenticity and safety of meat products. Some examples
of biosensors” applications to address these issues are given below.

Detection of Adulteration. Biosensors are used to detect chemical adulterants, and this
is related to unauthorized chemicals or food additives or packaging materials that may
be used to alter the appearance or quality of meat [220,221]. A specifically functionalized
graphene derivative was employed for the development of an impedimetric genosensor
for pork adulteration in real meat samples with a determination limit of detection of 9%
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W/W for pork content in beef [222], and an MIP nano gel-based sensor was proposed
for the detection of pork contamination in real beef extract samples, showing an LOD
of 12 ug/mL [89]. These sensors can also identify specific chemical markers or residues
indicative of fraud.

Species and origin authentication. Biosensors can verify the species of meat, helping to
prevent fraud where cheaper or different species are substituted for higher-value meats, for
example, when beef products should be free from pork residues due to religious or cultural
reasons. For example, label-free impedimetric genosensors for the sensitive detection
of pork residues in meat, based on single-stranded DNA probes specific for the pork
mitochondrial genome, have been developed. Such biosensors enable the detection of pork
residues in beef in less than 45 min (including sample preparation), with an LOD of 9%
w/w pork content in beef samples [220]. Spectroscopy-based sensors were developed to
detect frequent fraudulent practices related to minced meat substitution with cheaper raw
materials, such as beef with bovine offal and pork with chicken [223]. Similar sensors might
be also used for the detection of the authenticity of high-value products such as Wagyu
or Kobe beef. In the global market, many meat products are officially protected bearing
the mark ‘Protected Designation of Origin’ or ‘Protected Geographical Indications’. Such
products typically have a higher market value and because of this, are more vulnerable to
fraudulent practices associated with the use of cheaper raw materials from other species
or geographical regions. DN A-based biosensors can accurately identify meat species by
analyzing genetic material and can be proactive and cost-effective approach to ensure food
authenticity and verify food origin [29]. This is also because DNA is more stable and can
withstand harsh environmental conditions in comparison with proteins and metabolites,
thus being an excellent solution as a bioreceptor for the quantitative detection of food fraud
and adulteration [224,225].

Biosensors can be used in combination with other traceability technologies to verify
the origin of meat products. For example, sensors embedded in packaging or labels can
track and authenticate the meat’s journey from the farm to the table, ensuring that claims
about its origin are accurate, thus contributing to smarter food traceability [35].

Consumer protection. Portable biosensors can allow for on-site testing to determine
the quality and authenticity of meat products in retail settings or at home, such as the
verification of product labels or packaging to check claims made about the meat’s origin,
quality, or content [225]. This adds a layer of transparency and trust, empowers consumers
to make informed choices, and reduces the risk of being exposed to fraudulent practices.

In all, the deployment of biosensors in detecting meat quality traits can be an asset
for competent authorities (inspection) verifying the compliance of meat products with
food quality regulations, as well as facilitating a quicker response to potential food fraud.
Consumers may also benefit from using biosensors to ensure they receive the product they
are paying for, thus reducing the risk of fraudulent labeling.

4.5. Risk-Based Meat Safety Assurance System

Biosensors can become an integral part of the risk-based meat safety assurance system
(RB-MSAS), providing the real-time monitoring of selected foodborne hazards and ensuring
meat safety throughout the production chain. They should be also included in the future
training of official veterinarians to monitor the RB-MSAS [226,227]. An overview of the
application of biosensors in the meat production chain is presented in Table 1.
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Table 1. Biosensors in the meat production chain.
Applicability in the Meat
Biosensors Production Chain Reference
F S MP R
Stress detection sensors (hormones) X
Breath sensors (VOCs for the detection of metabolic and «
pathological processes)
Perspiration sensors (metabolites in sweat) X
Tears sensors (glucose monitoring) X
Salivary sensors (uric acid—metabolic syndrome, renal syndrome, « [2,166]
and abnormalities in purine metabolism)
Progesterone sensors (the detection of ovulation) X
Food and feed sensors (dietary inputs/nutrition, bioactive «
compounds, and microbiological and chemical contamination)
Infectious disease detection sensors (BRD, AIV, FMD, BVD, PRRSV, «
avian influenza, and mastitis)
Sensor for continuous glucose monitoring (CGM) in dairy calves X [100]
Sensor for monitoring of stress and animal welfare (hormonal
., X X [103]
levels) in pigs” blood
Glucocorticoid sensor (saliva, excreta, fecal samples, milk, « [104]
hair/feathers, and eggs)
. ’ . [5,103,113,
Sensors for inflammatory markers (acute-phase proteins) X X 117,118,120]
Sensors for metabolic markers (breath, blood, faeces, skin, urine,
. . X X [121-129]
and vaginal fluids)
Sensors for infectious disease detection:
Bovine. BRD (serum), BVD (serum; LOD of 103 CCID/mL), EBL, « [126,130,134]
FMD, bovine mycoplasma, mastitis (Hp in serum), and T
Campylobacter in dairy cattle (LOD of 3 CFU/mL)
Pigs. AFSV, PRRSV, SIV, and PCVAD x [1383129]'142'
Poultry. H5N1 (LOD of 10° EID50/mL), Clostridium perfringens
(LOD of 0.26-0.27 1g/CFU), audio-based sensor detection system
(Newrcastle Disease, Infectious Bronchitis, Infectious X [114,145-147]
Laryngotracheitis, AI, MG, CRD, infectious sinusitis,
mycoplasmosis), antibiotic residues
Early disease detection
 WBE X [174]
Sensors for monitoring reproductive health
Hormonal levels (progesterone and estrogen in milk, urine, and X [149-151]
feces) in dairy herds
Estrus detection X [160-162]
Sperm quality (in livestock) X [163-165]
Animal welfare monitoring sensors
Behavioral, physiological, and nutrition status X [165]
Animal Intersticial Fluid (ISF)
Saliva X [167,170,171]
Transport and Handling « « [166-172]
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Table 1. Cont.
Applicability in the Meat
Biosensors Production Chain Reference
S MP R
Pre-slaughter welfare assessment X [104,173]
Slaughterhouse and meat processing
Post-slaughter indicators (animal health and animal welfare) X [103]
X X [97,175-191]

Pathogen detection (Salmonella, Campylobacter, Shiga-toxin-producing E. coli « [192,193]
(STEC), Listeria monocytogenes, and viruses) T
Antibiotic residues X X X [194-196]
AMR X [197]
Pesticides X
Growth promoters X [198]
Dioxins X
Mycotoxins X X [201,202]
Meat quality traits
Freshness and spoilage (purine derivatives, ammonia, and VOCs) X X X [208-212]
Sensory and nutritional attributes (color, texture, visible fat, aroma, « « [213-218]
and flavor)
Food fraud
Food adulteration X X X [219-221]
Species and origin authentication X X [222-224]

F: farm; S: slaughterhouse; MP: meat processing; R: retail; LOD: limit of detection; BRD, bovine respiratory disease;
BVD, bovine viral diarrhea; EBL, Enzootic Bovine Leucosis; FMD, Foot and Mouth Disease; Hp, haptoglobin;
BSE, Bovine Spongiform Encephalopathy; AFSW, African Swine Fever; Al, avian influenza; PRRSV, porcine
reproductive and respiratory syndrome virus; SIV, Swine Influenza Virus A; PCVAD, porcine circovirus-associated
disease; MG, Mycoplasma gallisepticum; CRD, Chronic Respiratory Disease; WBE, wastewater-based epidemi-
ology; * Potential for application in livestock; farming systems; AMR: antimicrobial resistance; VOCs: volatile
organic compounds.

Their contribution to the RB-MSAS is important, since they enable the integration of
data acquired along all modules in the meat chain (farm-slaughterhouse-meat processing—
distribution-retail continuum) via IoT, such as a blockchain approach [227]. Namely, they
allow the integration of data from various stages of production and inspection into a
centralized system for the comprehensive monitoring of meat safety, allowing a holistic
approach. For example, biosensors contribute to the FCI dataset by providing real-time
information on foodborne hazards and facilitating FCI flow from farm to slaughterhouse—
meat processing-retail (bottom-up) and backward, from retail to farm (top-down). This
also enables record keeping and the tracking of meat products from production to the
point of sale within the blockchain system [35]. This may help to maintain comprehensive
records of safety and quality checks throughout the supply chain, analyze trends, and
conduct risk assessments using Al and ML. It is also important to enable interoperability to
ensure that the acquired data are compatible with existing food chain information systems,
which should facilitate seamless integration and enhance the overall effectiveness of MSAS
(Figure 4). Further, the important contributions of biosensors” application within MSAS are
related to epidemiological monitoring and surveillance by providing accurate and timely
information on potential foodborne hazards in various modules along the meat chain,
including outbreaks, thus enabling comparative analyses of meat safety data from various
sources via Harmonized Epidemiological Indicators (HEIs) [227,228]. Another advantage
of biosensors within the MSAS is the capability to automatically generate reports for regula-
tory compliance, documenting adherence to food safety regulations. By aligning biosensor
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data with HEIs, competent authorities can perform better risk assessments and manage
the risks associated with meat products, leading to more effective interventions and public
health protection. This helps competent authorities in risk management decisions and
allocating resources more effectively, focusing on the most critical points in the production
chain. Parallel to that, it also contributes to increasing consumer confidence in food control
systems, providing a better transparency. Overall, by integrating biosensor data into a com-
prehensive RB-MSAS, the meat industry can achieve better risk management, operational
efficiency, and build consumers’ trust in the safety of meat/meat products.
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Figure 4. A model for field implementation of multiplex, point-of-care biosensor in farm-to-
slaughterhouse continuum [227].

4.6. Opportunities and Challenges for Biosensors” Application in the Meat Production Chain

Due to the complexity of the meat supply chain, frequently associated with long
storage and distribution/transport periods for meat/meat products based on the specific
requirements of retail chains, biosensors are needed to enable proper real-time monitoring
in all phases of production [28]. As discussed above, biosensors can enhance food safety,
quality control, and traceability in the food chain. The opportunities for future applications
of biosensors along the meat chain (Figure 5) are numerous and they relate to improved
food safety monitoring, quality control and shelf-life monitoring, traceability, authenticity,
and real-time production process control [229].

Improved food safety monitoring. As discussed, biosensors offer the rapid, on-site detec-
tion of pathogenic microorganisms such as Salmonella, Escherichia coli, Listeria monocytogenes,
and Campylobacter, which are common in meat production. Biosensors can detect these
foodborne pathogens at low levels before contamination spreads through the supply chain,
thus allowing for timely actions to prevent the further transfer of pathogens along the
meat chain [230].

Quality control and shelf-life monitoring. Biosensors can track the freshness of meat by
detecting VOCs or pH changes associated with spoilage, which are crucial for ensuring
product quality [213,214].

Traceability and authenticity. Biosensors enable the detection of DNA or protein markers
specific to animal species, which helps in verifying meat authenticity, thus preventing fraud
(e.g., mislabeling or adulteration) [29].
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Figure 5. A structure model of biosensor for application in the meat chain.

Real-time production process control. The integration of biosensors in automated systems
allows for continuous monitoring along all modules in the meat chain [38], such as at the
farm (animal welfare and health), during slaughtering and meat cutting (microbial process
hygiene), and during packaging processes (control of cross-contamination), enhancing the
efficiency of quality control and reducing human error.

Challenges to the regular application of biosensors are related to several gaps that
may limit their widespread adoption and effectiveness. Identifying these gaps is crucial for
guiding further research and development. Some examples are given below.

Limited Range of Detection. Many biosensors are designed to detect specific pathogens,
contaminants, or spoilage markers, but the range of their detection is often narrow and
does not correspond either with regulatory limits or recommended values according to
best practices. Therefore, the issues related to detection range (an appropriate level of
detection, not always related to the lowest possible limits) should correspond with food
regulations and market requirements and allow for a balanced approach in the technological
development of biosensors [231].

Sensitivity and Specificity. This issue is related to false positives or negatives. The
specificity of biosensors can be compromised by cross-reactivity, leading to false positives
(detecting a hazard where none exists) or false negatives (failing to detect an actual haz-
ard) [229]. This is particularly an issue in complex samples within the meat production
chain (e.g., feces, slurry, carcass, meat juice, and meat products) which contain dirt, proteins,
fats, and other compounds that can interfere with a biosensor’s ability to detect specific
analytes. Overcoming these interferences is essential for reliable, accurate measurements in
real-world applications.

Lack of Standardization and Calibration. Biosensors can suffer from variability in their
performance due to differences in calibration, environmental conditions, or the biological
materials used. This lack of standardization can lead to inconsistent results and limit the
reliability of biosensors in diverse settings [33].

Environmental and operational conditions. Since meat production environments (farms,
slaughterhouses, processing plants, etc.) are subject to extreme conditions like fluctuating
temperatures, humidity, and the presence of organic matter, these factors can affect the per-
formance and durability of biosensors, limiting their usability in harsh operational settings.

Regulatory Compliance and Auditing. Biosensors, particularly those used in food safety
and quality control, face strict regulatory frameworks that vary across regions, such as
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the European Food Safety Authority (EFSA) and European Medicine Agency (EMA) in
the European Union or Food and Drug Administration (FDA) regulations in the United
States. The adoption of new biosensor technologies requires adherence to these regula-
tions and approval based on long-term validation data. This can delay the adoption of
innovative biosensors in the meat industry, which can delay their commercialization and
widespread use [231].

High costs and commercialization issues. The major challenges are related to costs and
economic feasibility, especially for those biosensors with advanced capabilities, which
remains a barrier to their widespread adoption, particularly for small- and medium-sized
enterprises (SMEs) in the meat industry. Another concern is the potential for commercial
applications of biosensors with regard to complexity (integration with existing meat safety
inspection systems, such as the MSAS, which can be complex and require training) and
accuracy (calibration to avoid interference from other substances and ensure accurate
results). Namely, the integration of sensing systems with the MSAS may require significant
and costly modifications to equipment or workflows to enable data management and their
interpretation. Therefore, ensuring that biosensor technology is affordable is crucial for its
widespread adoption and regular use.

Ethical considerations. The primary issue is to ensure that biosensor devices do not to
cause any discomfort or harm to animals. Other ethical aspects relate to concerns around
animal welfare, data privacy, economic equity, environmental impact, consumer trust, labor
dynamics, and regulatory oversight to ensure that this technology contributes positively to
the meat industry and society as a whole.

In all, biosensors in the meat continuum chain face several limitations, including
a low sensitivity, limited specificity, and potential interference from complex matrices.
While numerous solutions have been proposed in the scientific literature, most are still the
subject of research due to the complexity of practical implementation or their high mass
production cost. Other issues are related to the complexity of in-field sample extraction
and preparation, which is not practical for average end-users. Additionally, real-time
applications are hindered by regulatory challenges and the need for user-friendly designs
that can be easily integrated into industrial workflows. The adoption of new biosensor
technologies requires adherence to these regulations and approval based on long-term
validation data. This can delay the adoption of innovative biosensors in the meat industry,
commercialization, and widespread use.

Therefore, future research should focus on fit-for-purpose advanced fabrication meth-
ods, such as nanomaterial-based designs and nano- and micro-fabrication technology to
develop a low-cost device with an enhanced sensitivity and performance. Regarding sam-
ple preparation protocols for in-field use, the future trend will be focused on developing
multiplex platforms for the simultaneous detection of several biomolecules relevant to
animal health, welfare, food safety, and quality and their integration into autonomous
PoC and LoC devices, with Al protocols for data analysis. Improving sensor selectivity
through molecular engineering and Al-driven data analysis will enable the more accurate
and reliable detection of contaminants in the meat production chain. However, the mar-
ket demands a cheap and reliable product, so future efforts will be on the development
of scalable, low-cost manufacturing techniques, such as roll-to-roll printing and 3D bio-
printing to facilitate mass production while maintaining a high performance, affordability,
and cost-effectiveness.

5. Conclusions

The application of biosensors in the meat production chain represents an advancement
that may contribute to food system transformation by enhancing animal health and welfare,
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food safety and food quality control, reducing climate change’s impact, increasing con-
sumers’ confidence in meat business operators, and fostering transparency regarding data
management. Biosensors, as POC devices capable of monitoring biomarkers specific to ani-
mal health (acute-phase proteins) and welfare (stress hormones), microbial contamination
(foodborne pathogens, e.g., Salmonella, Campylobacter, Shiga-toxin-producing E. coli/STEC,
and L. monocytogenes), AMR (resistance genes), and environmental contaminants (pesticides,
dioxins, and mycotoxins), have the potential to address several longstanding challenges
in the meat industry. One of the key benefits of biosensors is their ability to improve food
safety by the rapid quantitative detection of foodborne pathogens and contaminants along
modules in the meat production chain (farm-slaughterhouse-meat processing—retail con-
tinuum) in real time. This not only minimizes the risk of occurrence of foodborne illnesses,
but also strengthens consumer confidence in the meat supply chain. Additionally, by
monitoring the health and well-being of livestock, biosensors can contribute to higher farm
biosecurity and welfare standards and more efficient production practices. Furthermore,
meat supply chain transparency will be enhanced, as biosensors provide traceable data
that may be deposited in open-access platforms, allowing consumers to make informed
choices. However, the deployment of biosensors also raises important ethical questions,
such as ensuring that biosensors do not cause any discomfort or harm to animals, as well as
enabling certain level of data privacy on animal health, welfare, and food safety. Challenges
also include maintaining economic equity related to a certain meat business operator. For
example, small-scale farmers and meat business operators may face barriers to accessing
this technology due to high costs, risking further inequalities in the industry. Therefore,
initiatives to subsidize or make biosensors more affordable to all stakeholders involved in
the meat production chain are crucial. In addition, automation in animal health, welfare,
and food safety monitoring and data-driven processes for analyses and risk assessment
based on Al and large language models (LLMs) could displace workers, necessitating
retraining programs to support the affected individuals. Further, respect for traditional
knowledge and practices is crucial in balancing innovation with cultural heritage and pre-
serving traditional production practices characteristic for certain geographical regions and
national habits. Environmental considerations also play a significant role. While biosensors
can optimize resource use (e.g., optimized animal nutrition and health) and reduce waste,
attention should be also given to the production and disposal of these devices, which
must be managed responsibly to prevent ecological harm. Using sustainable materials in
biosensors” manufacturing and recycling programs can mitigate such impacts. Additional
efforts should be made in terms of integrating the data acquired by biosensors within
RB-MSAS to contribute to FCI flow and HEIs and enhance an integrated approach toward
meat safety. This will improve consumer confidence in livestock raising conditions and
food control systems, as well as foster informed purchasing decisions. The vast amounts of
information generated by biosensors require robust governance frameworks to ensure fair
usage and protect key stakeholders’ rights (industry, competent authorities, researchers,
and consumers). To realize the full potential of biosensors” applications in the meat chain,
collaborative efforts among key stakeholders will be essential. Further research should be
conducted to address not only technical aspects in biosensors’ manufacturing (nanomateri-
als, detection methods, and sensitivity) and environmental protection, but also to develop
a model system for their application to achieve regulatory approval. Additional efforts
should be made to find appropriate solutions regarding socioeconomic aspects related to
biosensors’ affordability and inclusivity for small-scale producers. These research efforts
should ideally be conducted through a trans-disciplinary collaboration between life and
social sciences/humanities to achieve acceptable and fit-for-purpose solutions enabling a
more efficient and sustainable meat industry.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial intelligence

AMR Antimicrobial resistance

APP Acute-phase proteins

CFU Colony-forming units

COVID-19  Corona Virus Disease of 2019

EC Electrochemical

EIS Electrochemical impedance spectroscopy
ELISA Enzyme-linked Immunosorbent Assay
F2F Farm-to-fork

FCI Food chain information

FET Field-effect transistor

IoT Internet of Things

HEIs Harmonized epidemiological indicators
HPLC Reaction—PCR, High-Performance Liquid Chromatography
LC-MS Liquid chromatography—mass spectrometry
LC-UV Liquid chromatography and UV detector
LED Light-emitting diode

LOC Lab-on-a-chip

LOD Limit of detection

MIPs Molecularly Imprinted Polymers

ML Machine learning

MRS Magnetic Relaxation Switching

POC Point-of-care

PCR Polymerase Chain Reaction
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PLF Precision livestock farming

PMB Portable multifunction biosensor

PIC Photonic integrated circuit

QCM Quartz crystal microbalance (resonator)
RPA Recombinase Polymerase Amplification
RB-MSAS  Risk-based meat safety assurance system
SAW Surface acoustic wave

SERS Surface-Enhanced Raman Spectroscopy
SPR Surface plasmon resonance

VOCs Volatile organic compounds
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