International scientific conference

Environmental impact of illegal construction, poor planning and design IMPEDE 2019

CONFERENCE PROCEEDINGS

10 – 11 October 2019, Belgrade, Serbia

CONFERENCE PROCEEDINGS

International scientific conference Environmental impact of illegal construction, poor planning and design IMPEDE 2019

Organizer / Publisher: Association of Chemists and Chemical Engineers of Serbia (UHTS)

Organizer: Academy of Engineering Sciences of Serbia (AESS)

Co – Organizers: Faculty of Forestry, University of Belgrade and Institute for Technology of Nuclear and Other Mineral Raw Materials, Belgrade

IMPEDE 2019 conference is supported by Ministry of Education, Science and Technological Development, Republic of Serbia

Editor in Chief: Marina Mihajlović, Ph.D

For publisher: Zoran Popović, M. Sc.

Printing office: Čigoja štampa Studentski Trg 1, Belgrade

Print run: 120

ISBN: 978-86-901238-0-3

SCIENTIFIC COMMITTEE

- Emeritus Professor Miroljub Adžić, University of Belgrade Faculty of Mechanical Engineering, AESS Vice President
- Emeritus Professor Slobodan Petrović, University of Belgrade Faculty of Technology and Metallurgy, AESS full member
- Emeritus Professor Čedo Maksimović, Imperial College, London, England
- Prof. Branka Dimitrijević, FHEA, Director of Research and Knowledge Exchange Department of Architecture University of Strathclyde, Glasgow, Scotland
- Mila Pucar, Ph.D., Institute of Architecture and Urban and Spatial Planning of Serbia, AESS full member
- Prof. Florian Nepravishta, Faculty of Architecture and Urbanism, Dean, Polytechnic University of Tirana, Albania
- Prof. Ilija Ilić, AESS full member
- Prof. Aleksandra Smiljanić, University of Belgrade Faculty of electrical engineering, AESS corresponding member
- Prof. Ratko Ristić, University of Belgrade Faculty of Forestry Dean, AESS corresponding member
- Prof. Kiril Sotirovski, University Ss. Cyril and Methodius Faculty of Forestry Dean, Skopje, North Macedonia
- Prof. Anita Grozdanov, University Ss. Cyril and Methodius Faculty of Technology and Metallurgy, Skopje, North Macedonia
- Prof. Mirjana Drenovak Ivanović, University of Belgrade Faculty of Law
- Prof. Nataša Tomić-Petrović, University of Belgrade Faculty of Transport and Traffic Engineering
- Prof. Radmilo Pešić, University of Belgrade Faculty of Agriculture, Associate Fellow of the World Academy of Art and Science, Vice-President of the Club of Rome Serbian Chapter
- Sanja Šaban, MSc Architecture, Ministry of Construction and Physical Planning Assistant Minister, Zagreb, Croatia
- Miroslav Sokić, Ph.D., Director Institute for Technology of Nuclear and other Mineral Raw Materials director, Belgrade, Serbia
- Prof. Dušan Vuksanović, University of Montenegro Faculty of Architecture, Podgorica, Montenegro
- Marina Mihajlović, Ph.D., Scientific Committee Secretary, Innovation center Faculty of Technology and Metallurgy, Belgrade
- Prof. Mića Jovanović, Scientific Committee General Chair, University of Belgrade Faculty of Technology and Metallurgy, AESS full member, UHTS Board member

ORGANIZING COMMITTEE

- Zoran Popović, M.Sc., Organizing Committee General Chair UHTS Board President
- Gordana Nešić, M.Sc. UHTS Board member
- Branislav Tanasić, Ph.D., UHTS Board member
- Marina Mihajlović Ph.D., Innovation center Faculty of Technology and Metallurgy, Belgrade
- Ana Dajić, M.Sc., Innovation center Faculty of Technology and Metallurgy, Belgrade
- Julijana Tadić, M.Sc., Innovation center Faculty of Technology and Metallurgy, Belgrade
- Milica Svetozarević, M.Sc., Innovation center Faculty of Technology and Metallurgy, Belgrade
- Prof. Mića Jovanović, University of Belgrade Faculty of Technology and Metallurgy, AESS full member, UHTS Board member

Table of contents

Environmental and Health Problems from Electricity Production in Serbia1
Eco-Innovation and Sustainable Development
Asbestos in Illegal Construction and its Impact on Human Health16
Agile Urban Planning and Phased Housing Construction for Migrating Populations
Planning and Designing of Mobile Telephony in Order to Preserve and Protect the Environment
Knowledge Management in the Field of Environment: Comparative Analysis of SRPS and ISO Standards
Potential Harmful Effects of Illegal Construction – Related Noise on Mental Health
Impact of an Incomplete Project on the Environment59
Impact of Informal Settlements on the Environment in Southeast Europe – A Review
The Consequences of Illegal Construction on the Environment72
Illegal Construction - Individual Benefit and Immeasurable Social Damage80
Advantages of Microreactor Technology over Conventional Methods in Enzymatic Wastewater Treatment - Environmental Application of Enzymes89
Alternatives in Solid Waste Final Treatment and Disposal in Oil-Petrochemical Complex Pančevo
Are the Tube Microreactors Future of Wastewater Treatment?107
Closure of Historical Landfill in Serbia – Environmental Safety Analysis113
Technical Aspects Analysis of Final Waste Treatment and Disposal in Belgrade, Serbia
Development of Green Chemical Process: The Reaction of Condensation in a Continuous Flow Microreactor System
Causes and Consequences (Real and Possible) of Disastrous Flood in May 2014 in the Lower Part of the Sava River Basin
Environmental Protection in Serbia in the Context of Small Hydro Power Plants (Derivative Type) Construction
Urban-Planning, Spatial and Technical Documentation, Application of Legal Regulations for Small Hydropower Plants (derivative type)-Bad Practice Examples
Poorly Planned and Executed Practices in Skopje Lead to "Constricted Trees" in Urban Greenery

Implementation of Engineering-Geological Data within the Planning Documentation with the Goal to Prevent Mistakes During Planning, Projecting and Protecting the Environment
The Losing Concept of Singular Urban Trees and the Related Long-term Negative Implications for Urban Greenspace
Best Available Technologies in Textile Industry207
Causes and Consequences of Inadequate Biological Reclamation of Mine Lands: Case Study Bor, Serbia
Outdoor Advertising Panels are Taking Over Not Only View to Greenspace, But Greenspace Itself – Skopje as a Case Study
Urban Renewal of Areas of Illegal Construction in the Republic of Croatia236
The Illegal Construction as Consequence of Social Deviance or Existential Need
Critical Review of Current Law on Legalization through an Analysis of Processed Statistical Data of Legalization Department of the City of Belgrade
Hydraulic Infrastructure and its Sensitivity to the Protection of Areas and Systems from Inappropriate Use and Destruction
A Greener City for Everyone: Case Study – Barcelona
Social-Ecological Aspects of Irregular Settlements
Cypress Revolution: The Importance of Public Participation in Urban Planning Decision-making Process in Montenegro
Fifty shades of green - Project Management and Environmental Protection317
Integrated Environmental Management
Illegal Construction, Poor Planning and Design of Residential Sector in the Republic of Serbia – Impacts on Energy Intensity and Economy
Urban Reconstruction as an Outright Solution to the Legalization of the Illegal Construction on the Example of Altina 2 Settlement in Belgrade
The Consequences of Reduced Standards in Process of Legalization of Residential Buildings on the Environment and User's Quality of Life
Serbian Evironmental Protection in Social Media
Quantification of the Impact of High-rise Buildings on Generating Heat Islands in the Area of the Realisation of The Special Purpose Plan "Belgrade Waterfront" in Belgrade
Environmental and Social Consequences of Climate Change and Adaptation 388
Risk Management – The Key Ingredient of the Environmental Projects

Effect of Illegal Construction on the Environment and the Fight for Survival in Times of the Imbalance of Power
Recent Changes of Serbian Public Law and its Impact on Environmental Protection
Photocatalytic Degradation of Methylene Blue by Catalysts Prepared from Serbian Clinoptilolite and SnO ₂
Endangered Urban Tissue in the City of Nis Underneath the Process of Free Economy
Vernacular architecture in the towns of southern Serbia as a part of modern urbanization
Strategic Environmental Assessment (SEA) on Spatial Plans for the Special Purpose Areas- Problems, Conflicts and Their Relativization
Implementation of the aspect of environmental protection in all stages of the construction of a building
Flame Visualization for Multi-fuel Burner Emission Control
Improper Deposition of the Mining Waste as a Source of the Environmental Pollution: Case Study of the Lake Robule (Bor, Eastern Serbia)474
Housing in Belgrade Town Center - Twenty Years After
Urbanized Illegal Construction without Expertise in the Context of New Occupations and Environmental Protection
The Impact of the Lack of Reliable Data on the Decision-Making Process in the Environmental Protection Field
Study of the Geoeffectiveness of Various Phenomena and Processes in Solar and Magnetic Weather on Human Activity
Eco-Funds as Prerequisites for a Successful Environmental Policy507

Photocatalytic Degradation of Methylene Blue by Catalysts Prepared from Serbian Clinoptilolite and SnO₂

Fotokatalitička degradacija metilensko plavog u prisustvu katalizatora na bazi klinoptilolita sa područja Srbije i SnO₂

Jelena Pavlović¹, Aleksandra Popović², Nevenka Rajić^{2,*}

¹Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia, ²Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia

In this work, clinoptilolite-rich zeolitic tuff from the deposit Slanci (near Blegrade) was used for the preparation of a photocatalyst. Clinoptilolite surface was modified by Sn(IV) oxide in different amounts (3-15 wt.% Sn) using a simple procedure consisted of three steps: a) ion exchange, b) precipitation of Sn hydroxide and c) calcination under air at 400 °C. Photocatalytic activity was studied in water solution of methylene blue (MB) as a model pollutant with initial concentration of 10 ppm at room temperature, using different amounts of the prepared catalyst. The suspension was irradiated for 180 min in a solar simulator chamber with a visible-light lamp (8 mW cm⁻²). The prepared catalysts exhibited catalytic activity higher than pure SnO₂ indicating a significant role of the clinoptilolite lattice in the photodegradation of MB. It is showed that the initial concentration of MB decreased for 45-75 % depending of the catalyst amount. Reusability of the catalyst was tested in three catalytic cycles showing that photocatalytic activity partially decreases which is ascribed to partial blockage of catalytically active sites.

Keywords: photocatalysis, zeolite, organic dyes

* nena@tmf.bg.ac.rs

1. Introduction

Different organic dyes are discharged in water body mainly from textile and leather industries. These organics are generally toxic and carcinogenic and their presence in water even in low concentrations causes serious environmental problems. Although still important, traditional water purification methods such as mechanical separation, filtration, flocculation, coagulation or chemical treatments need to be invented as well as novel water treatment technologies more efficient than the traditional ones should be developed.

Organic dyes possess complex structures and their degradation is usually complicate. Advanced Oxidation Processes (AOPs) have been recognized as effective methods for a complete degradation of organic dyes. Effectiveness of

AOPs has mainly been ascribed to the formation of highly reactive hydroxyl radicals formed by an activated catalyst.

Photocatalysis is one of the AOPs considered as an environmental friendly and efficient method. Metal oxides such as TiO_2 , ZnO, SnO_2 , or Fe_2O_3 have been reported to exhibit significant photocatalytic performance [Kim et al., 2015; Dariani et al., 2016]. It has been reported that the catalytic activity and reusability of these oxides can be significantly improved by immobilization of the oxide particles onto suitable supports [Bahrami and Nezamzadeh-Ejhieh, 2015; Maučec et al., 2018].

Due to their unique structural properties as well as due to low cost and environmental compatibility, in this work we used for the preparation of a photocatalyst zeolite – clinoptilolite which is the most abundant natural zeolite in Serbia. Clinoptilolite 3D structure is characterized with an open-framework lattice which enables an easy access to the channel system with nanometric apertures.

Catalytic activity was tested in the photodegradation of methylene blue (MB) as a model cationic dye under visible light.

2. Experimental

2.1 Synthesis

Zeolitic tuff (Z) obtained from Slanci deposit (near Belgrade) was used in this study. Semiquantitative X-ray diffraction analysis performed by Rietveld refinement method (Topas-Academic v.4) showed that zeolite – clinoptilolite is the major mineral phase (about 80 wt.%) whereas quartz ($\sim 4 \text{ wt.\%}$) and feldspars ($\sim 16 \text{ wt.\%}$) are accompanying mineral phases.

The grain size used in all experiments was in the range of 0.063-0.1 mm for which previous experiments showed to be optimal ones for the modification process.

The modification consisted of two phases. In the first one, the tuff sample was treated with HCl (1 mol dm⁻³) and then with NH₄OH (0.2 mol dm⁻³). The treatment resulted in the preparation of NH₄-containing clinoptilolite (NH₄-Z). The calcination of the NH₄-Z at 600 °C resulted in conversion of NH₄-Z to HZ.

In the second phase the HZ was loaded by SnO₂ as follows. HZ was suspended in the ethanol solution of SnCl₂ containing different amounts of SnCl₂ and pH was adjusted to 10 using NH₄OH. The dried products were calcined at 400 $^{\circ}$ C under air yielding SnO₂-Z (with 3-15 wt.% Sn).

2.2 Characterization

The crystallinity of the samples was tested by a powder X-ray diffraction method (PXD) using an APD2000 Ital Structure diffractometer (CuK_{α} radiation, λ =0.15418 nm).

Elemental analyses were performed using a Carl Zeiss Supra[™] 3VP fieldemission gun scanning electron microscope (FEG-SEM) equipped with EDS detector (Oxford Analysis) with INCA Energy system for quantification of elements.

Porosity characteristics were determined by N₂ adsorption at -196 °C using a Micromeritics Instrument (ASAP 2020). The specific surface area (S_{BET}) was calculated according to the Brunauer, Emmett, Teller (BET) method up to relative pressures $p/p_0 = 0.15$.

The presence of SnO_2 onto samples was revealed from diffuse reflectance spectra (DRS) measured in the range 200-600 nm using V-650, JASCO UV-VIS spectrometer.

2.3 Photocatalytic tests

The photocatalytic experiments were performed in a batch 50 cm³ reactor. The reaction mixture, contained a solution of MB (10 ppm) and catalyst (7.5-40 mg) was illuminated with a visible-light lamp (8 mW cm⁻²) and mixed by bubbling O_2 at 25 cm³ min⁻¹ from the bottom of the chamber during 180 min. The concentration of MB was measured colorimetrically at $\lambda = 664$ nm using Hach DR 2800 spectrophotometer.

The spent catalyst for which the photocatalytic experiments gave the best performance was chosen for recycling experiments. The catalyst was separated from suspension by filtration, left to dry at room temperature, washed 3 times with 0.01 M HNO₃ and dried at 90 °C for 1h prior to be reused.

3. Results and discussion

PXD analysis showed that crystallinity of the zeolite - clinoptilolite remains intact after the conversion of Z to SnO_2 -Z (Fig. 1). The pattern of SnO_2 -Z does not exhibit any novel phase even at the highest amount of Sn which suggests that the formed SnO_2 (*vide infra*) is amorphous.

Figure 1. PXD patterns of Z, HZ and SnO₂-Z (with 15 wt.% Sn).

EDS analysis of the clinoptilolite phase of all the studied samples showed that conversion of the Z to HZ caused: a) a partial dealumination of the clinoptilolite lattice which results in increase of Si/Al molar ratio from 4.9 to 7.2, b) significant decrease of Na content (from 0.2 to 0.02 wt.%), c) removal of K, Ca and Mg present in the Z before its modification and d) the content of Sn varied from 3 to 15 wt.% in SnO₂-Z samples

The conversion of Z into HZ increased the specific surface area from 32 to 198 m² g⁻¹. The SnO₂ loading slightly influenced the specific surface area and decreased it to 170 m² g⁻¹. This could be ascribed to a partial pore blockage of the clinoptilolite lattice by formation of SnO₂ particles.

DRS revealed that the second phase of the modification process resulted in the formation of SnO_2 . Fig. 2 clearly shows that the absorption maximum centered at 263 nm present in the spectrum of pure SnO_2 is also evident in the spectrum of SnO_2 -Z. This maximum is not evident in the spectrum of HZ.

Photocatalytic tests showed that all SnO_2 -Z samples are catalytically active. The activity increased with increasing of the Sn content (Fig. 3a) in SnO_2 -Z as well as with increasing of applied catalyst amount. The highest degradation rate of MB (75 %) was achieved with 40 mg of the SnO_2 -Z (Fig. 3b).

Fig. 3a shows an interesting phenomenon: all SnO_2 -Z samples exhibited better catalytic performance than pure SnO_2 . It indicates that the clinoptilolite lattice has a significant role in the photocatalytic degradation of MB.

Figure 2. DR spectra of SnO₂, HZ and SnO₂-Z with 15 wt.% Sn.

The recycling experiment was performed using the highest amount of the SnO_2 -Z (Fig. 4). During three cycles the photocatalytic activity of SnO_2 -Z decreased to about 30 %. The effect could be ascribed to a partial blockage of the active sites on the catalyst surface by the degradation products of MB. This shows that future work should be directed towards preservation on active sites on the catalyst as well as to optimization of recovering process.

Figure 3. Results of photocatalitical degradation of MB: a) in the presence of 10 mg catalyst. Different amounts of Sn (in wt.%) are in parentheses; b) by using a different amount of SnO_2 -Z(15).

Figure 4. Reusability of SnO₂-Z(15) in photocatalitical degradation of MB.

4. Conclusion

Present results show that the clinoptilolite-rich zeolitic tuff from a Serbian deposit can be used in the preparation of catalysts active in the photodegradation of organic dyes under visible light. By a simple procedure sample of the tuff was converted in the catalyst with a high catalytic activity in the photodegradation of methylene blue. Since the photocatalytic activity partially decreased during reuse experiments future investigation will be directed towards the preservation of its activity.

Acknowledgement

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 172018).

References

Bahrami M, A Nezamzadeh-Ejhieh, Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution, *Materials Science in Semiconductor Processing*, 30 (2015) 275-284, DOI 10.1016/j.mssp.2014.10.006

Dariani R S, A Esmaeili, A Morteyaali, S Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO_2 nano-sized particles, *Optik*, 74 (2016) 7143-7154, DOI 10.1016./j.ijleo.2016.04.026

Kim S P, M Y Choi, H C Choi, Photocatalytic activity of SnO₂ nanoparticles in methylene blue degradation, *Materials Research Bulletin*, 74 (2016) 85-89, DOI 10.1016./j.materresbull.2015.10.024

Maučec D, A Šuligoj, A Ristić, G Dražić, A Pintar, N N Tušar, Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH, *Catalysis Today*, 310 (2018) 32–41, DOI 10.1016/j.cattod.2017.05.061