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Aim: Through the application of structure- and ligand-based methods, the authors aimed to create
an integrative approach to developing a computational protocol for the rational drug design of
potent dual 5-HT2A/D2 receptor antagonists without off-target activities on H1 receptors. Materials &
methods: Molecular dynamics and virtual docking methods were used to identify key interactions of the
structurally diverse antagonists in the binding sites of the studied targets, and to generate their bioactive
conformations for further 3D-quantitative structure–activity relationship modeling. Results & conclusion:
Toward the goal of finding multi-potent drugs with a more effective and safer profile, the obtained results
led to the design of a new set of dual antagonists and opened a new perspective on the therapy for
complex brain diseases.
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Neurological and mental disorders are the leading causes of disability and impairment of quality of life in the
world. Globally, it is estimated that they affect 13% of the population, while around 40% of the European Union
population suffers from at least one disease from the neuropsychiatric spectrum [1–4]. Moreover, the COVID-
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19 pandemic has significantly affected the mental health of people worldwide [5]. Even though the overall impact
on mental well-being is not yet clear, it is possible to conclude that these disorders are an international public health
priority with marked consequences for society [6].

Neurological diseases are very often associated with mental disorders and both are characterized by an imbalance
of neurotransmitter systems in the brain. The serotonergic and dopaminergic systems appear to be involved in the
regulation of not only motor but also non-motor functions, such as cognition, mood, behavior and neuroendocrine
secretion [7,8]. Nevertheless, the dysfunction of dopamine (DA) and 5-hydroxytriptamine, 5-HT (serotonin)
neurotransmission in the central nervous system (CNS) has been involved in the pathogenesis of various brain
disorders, such as anxiety, depression, schizophrenia and Parkinson’s disease [8–13].

In fact, the balanced modulation of serotonin 5-HT2A receptor (5-HT2A-R) and dopamine D2 receptor (D2-R)
is crucial for the effective treatment of these multi-factorial brain disorders [14]. Antagonism of these receptors
presents a main mechanism of action for the antipsychotic efficacy of the second-generation atypical antipsychotics
(AAPs) [15]. Compared with typical antipsychotics (TAPs), which are known to be potent D2-R antagonists,
AAPs are considered multi-target directed compounds [15,16]. Many studies have shown that AAPs, despite being
able to control a variety of the positive symptoms of psychosis, are also very effective in alleviating the negative
symptoms as well as cognitive dysfunction [15–18]. Moreover, they are less likely to cause the adverse effects
associated with motor activity and extrapyramidal symptoms (EPSs) [19]. Although a multi-target approach tends
to be beneficial, its polypharmacological profile may increase the occurrence of side effects. Off-target activity on
the histamine H1 receptors (H1-Rs) has been reported to be highly correlated with metabolic dysregulation caused
by antipsychotics [20–22].

Utilization of computer-aided drug design (CADD) methods in the process of rational drug design has an
important role in the discovery of new compounds with an optimal polypharmacological profile [23,24]. Establishing
balanced modulation of these targets is very challenging but could be effectively examined through the integration
of different drug design methods, which are commonly divided into ligand-based drug design (LBDD) and
structure-based drug design (SBDD) methods [25]. 3D-quantitative structure–activity relationship (3D-QSAR)
represents one of the most frequently used LBDD approaches to pharmacophore analysis and activity prediction
of newly designed compounds [24,26]. On the other hand, SBDD approaches, such as molecular dynamics (MD)
simulations and molecular docking, aim to simulate the dynamic behavior of molecular systems and to predict the
best binding mode of a studied ligand to a protein [27,28]. Since crystal structures of 5-HT2A-Rs, D2-Rs and H1-Rs
are available [29–31], the integration of such approaches may be a beneficial strategy to obtain more reliable results
for the design of potential novel therapeutics.

Therefore, the design of multi-functional compounds with optimal antagonistic activity on both 5-HT2A-Rs
and D2-Rs, and with a lower binding affinity to the H1-Rs, may present a significant advance in the treatment
of neuropsychiatric disorders. Even though there are many approved drugs on the market, there is still a great
need to develop medications with good efficacy and an improved safety profile. Unlike previous studies, this one
was based on a comprehensive pharmacophore analysis of dual 5-HT2A/D2 receptor (5-HT2A/D2-R) antagonists,
taking into account their selectivity against H1-Rs [32–35]. Particularly, datasets consisting of chemical structures
with a wide range of experimental activity and structural diversity were employed for the careful analysis of key
interactions in proteins’ binding sites utilizing MD and molecular docking methods. This study also included
derivatives of lumateperone, which is a potent dual 5-HT2A/D2-R antagonist recently approved for the treatment
of schizophrenia in adults [36]. Furthermore, the specific bioactive conformations of the tested compounds were used
to elucidate which molecular determinants influence the 5-HT2A/D2-R antagonistic activity and selectivity against
the H1-R. This way, the authors obtain more realistic and trustworthy results regarding how structurally different
compounds bind and modulate the activity of the studied receptors, providing valuable information for the design
of novel antagonists with a desired activity profile.

Materials & methods
Dataset preparation
In this study, a broad spectrum of structurally diverse antagonists were used for pharmacophore analysis and
3D-QSAR model building. The principal component analysis (PCA) was employed in Pentacle [37] to inspect the
structural similarities of the studied compounds based on the calculated grid independent descriptors (GRINDs) [38].
Following the obtained findings (Supplementary Figure 1), dataset compounds could be divided into three different
clusters, including cluster one – tricyclic derivatives of dibenzocycloheptene (clozapine-like compounds), cluster
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two – derivatives of 1,2-benzoisothiazole (ziprasidone-like compounds) and cluster three – tetracyclic quinoxaline
derivatives (lumateperone-like compounds).

Clozapine, ziprasidone and lumateperone belong to a group of atypical antipsychotics that are known to be
potent 5-HT2A/D2-R antagonists. Due to their well-known efficacy in treating patients experiencing psychotic
symptoms, they represent great lead molecules for further investigations. Moreover, ziprasidone and lumateperone
were found to have a lower tendency to induce metabolic side effects compared with clozapine [39,40]. Therefore,
these compounds were chosen to be cluster representatives in order to elucidate key structural features important
for the activation of target proteins.

Namely, the datasets for 5-HT2A-R and D2-R comprised cluster one (Supplementary Figures 2 & 3), cluster two
(Supplementary Figure 4) and cluster three (Supplementary Figure 5) compounds [22,41–44]. On the other hand, the
dataset for H1-R included compounds from cluster one and cluster two only [41,45]. However, lumateperone-like
derivatives from cluster three were not included in the 3D-QSAR study for H1-R due to the absence of experimental
data.

All examined compounds were downloaded from the ChEMBL database (www.ebi.ac.uk/chembl/) with their
antagonistic activities expressed as negative logarithm of inhibition constant (pKi=-logKi) (Supplementary Tables
1–3). The pKi distribution range for 5-HT2A-R was 5.92–11.00, while slightly lower values were observed for
the D2-R model, 5.52–9.05, as well as for H1-R, 5.06–9.86. Since wide ranges of activity values are preferable in
building regression models, the use of selected datasets will ensure their good predictive power and wide applicability.
The MarvinSketch program [46] was used for the selection of dominant forms of compounds at physiological pH
7.4. Furthermore, selected forms were submitted for energy minimization by the semi-empirical Parameterized
Model revision 3 (PM3) method [47,48] and Hartree-Fock/3-21G method [49] from Gaussian software [50] included
in Chem3D Ultra (Chem3D Ultra v7.0, 2001, www.cambridgesof t.com/) [51]. The final ligand’s conformations
were selected after employing MD and molecular docking studies.

MD simulation
MD as an SBDD method requires 3D protein structure to provide deeper insight into the protein–ligand interactions
and binding conformations. 5-HT2A-Rs, D2-Rs and H1-Rs belong to the rhodopsin-like family of G protein-
coupled receptors (GPCRs). They consist of seven transmembrane (TM) helices, three intracellular loops (ICLs)
and three extracellular loops (ECLs), which were also found to play a critical role in ligand binding specificity.
Previously reported crystallographic studies on target receptors revealed their high-resolution crystal structures in
inactive conformations. Both, 5-HT2-R and D2-R were determined in complexes with widely known atypical
antipsychotic risperidone at 3.0 Å and 2.9 Å resolutions, respectively (PDB ID: 6a93, 6 cm4), whereas H1-R was
purified in complex with a first-generation antagonist, doxepin at a resolution of 3.1 Å (PDB ID: 3rze) [29–31].
Selected crystal structures were downloaded from the Protein Data Bank (PDB) database [52].

The PlayMolecule web platform was used for the protonation of examined proteins at physiological pH
7.4 [53]. Cluster reference ligands were docked into protein 3D structures using AutoDock Vina (AD Vina)
software [54,55]. Actually, three separate simulations were performed for each studied receptor in complexes with
clozapine (ChEMBL42), ziprasidone (ChEMBL708) and lumateperone (ChEMBL3233142). The α carbon coor-
dinates of Asp3×32 (Asp155 for 5-HT2A-R, Asp114 for D2-R and Asp107 for H1-R) were used for grid centering
in all cases and the grid box was set to be 12 Å, enabling ligand to rotate freely in the binding pocket.

As in some previous studies on GPCRs, 50 ns of production phase was executed on the system to ensure
that simulations lasted long enough to reach an equilibrium [56–58]. The Visual Molecular Dynamics (VMD)
program [59] was used to prepare the system, while Nanoscale Molecular Dynamics (NAMD) was utilized for MD
simulations [60]. Since the studied proteins belong to GPCRs, the membrane environment was simulated with
1,2-palmitoyl-oleoylsn-glycero-3-phosphocholine (POPC) membrane (membrane dimensions of X and Y were set
to 80 Å in the case of 5-HT2A-R and 120 Å in the case of D2-R and H1-R). The CHARMM General Force Field
(CGenFF) web platform was used to generate the ligands’ topology files [61,62]. The CHARMM36 force field for
lipids and proteins were applied to enable the hybrid system. The TIP3P water model was used for solvation of
the whole system, while neutralization was performed with NaCl at 0.2 M concentration. Distance cutoff for Van
der Waals (VdW) and electrostatic calculations was set to 12 Å. Generally, the entire simulation process could be
divided into several steps: minimization, equilibration and production run. The initial minimization was performed
with flexible lipid tails, and all other atoms fixed (protein, ligand, water, ions and lipid head groups). After 1000
steps of minimization, the velocities were reinitiated to the desired temperature, and equilibration was run for
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0.5 ns (using a 2 fs timestep). The second minimization run was performed with harmonic constraints imposed
on the protein, which enabled lipids, ions and water to adapt to the receptor. The minimization was then followed
by an equilibration to prevent hydration of the hydrophobic regions. Subsequently, the whole system was further
equilibrated without any constraints. Finally, the production run for each simulation was carried out for 50 ns at a
temperature of 310 K and pressure of 1 atm. Fluctuations in the barostat were controlled with Langevin dynamics
(Nose–Hoover method). The root mean square deviation (RMSD), solvent accessible surface area (SASA) and
number of hydrogen bond values were used to verify the stability of the performed simulations and were measured
by VMD.

Molecular docking
Molecular docking is a frequently used CADD technique for the analysis of binding site interactions as well as
free energy of binding calculation [63]. Starting from the obtained antagonist-bound conformations from MD
simulations, the authors aimed to predict the predominant bioactive conformers of all examined ligands by using
AD Vina software [55].

Namely, nine different complexes were subjected to MD study (5-HT2A-R–clozapine, 5-HT2A-R–ziprasidone,
5-HT2A-R–lumateperone, D2-R–clozapine, D2-R–ziprasidone, D2-R–lumateperone, H1-R–clozapine, H1-R–
ziprasidone and H1-R–lumateperone). The last frame of each simulation was extracted and used in molecular
docking analysis. The obtained inactive conformations of studied targets in complexes with reference ligands
were further employed as templates for conformer generation. Therefore, dataset ligands were docked into the
appropriate receptor conformation depending on which cluster they belong to. Precisely, ligands from cluster
one were docked into the receptor’s conformation after simulation with clozapine and ligands from cluster two after
simulation with ziprasidone, while ligands from cluster three were docked into the receptor’s conformation after
simulation with lumateperone. Flexible ligand sampling was used as a docking procedure in AD Vina, while the
protein conformation was considered to be fixed. The grid box size was set to 12 Å for each direction, while the
coordinates of the α carbon of asparagine amino acid (Asp155-5-HT2A-R, Asp114-D2-R and Asp107-H1-R) were
used as grid center. The conformations were explored with pose generation set to 20 and exhaustiveness value set to
50. Based on the binding mode similarity to a reference ligand, as well as AD Vina docking score, the final ligands’
conformations were selected and utilized for further 3D-QSAR analysis. All docked complexes were visualized and
illustrated using Discovery Studio Visualizer [64].

3D-QSAR modeling
The Pentacle program [37] was utilized for 3D-QSAR analysis in order to identify molecular determinants that
influence the antagonistic activity of the studied compounds at 5-HT2A-Rs, D2-Rs and H1-Rs. It is based on
the calculation of GRINDs (GRIND and GRIND2) [65]. They represent 3D-based molecular descriptors that
are obtained from molecular interaction fields (MIFs). Four different chemical probes, with 0.5 Å grid step, were
used to compute MIFs, including the TIP probe, which represents the shape of the molecule; the DRY probe,
which designates hydrophobic interactions; the N1 probe, which denotes hydrogen bond donor (HBD) groups;
and the O probe, which represents hydrogen bond acceptor (HBA) groups. Starting from the different types of
grid-computed MIFs, the discretization algorithm ALMOND was used to extract the highly relevant regions (hot
spots) that could contribute to the binding affinity. The number of nodes was set to 100, while the weight was
set to 50%. To encode the filtered MIFs into GRIND variables, the authors employed the consistently large auto
and cross correlation (CLACC) algorithm, with a 0.8 smoothing window [66]. Finally, the obtained results were
presented as correlograms where each variable was defined as the interaction of two grid nodes, which belong to
certain MIF types, at a specific distance range. The large number of initially calculated descriptors was reduced
using fractional factorial design (FFD) generating optimal linear partial least squares (PLS) estimations (GOLPEs)
in order to obtain the most significant GRIND variables [67]. Afterward, PLS regression analysis was used for
3D-QSAR model building.

Based on the PCA score plot and the common structural features, the whole datasets of 5-HT2A-R (n = 80), D2-R
(n = 73) and H1-R (n = 48) were divided into training (70%) and test (30%) set compounds. In fact, the test set
was selected such that each compound remained close to at least one of the training set compounds from the same
cluster, taking into account that the pKi values were homogeneously distributed throughout the range. The training
set comprised the rest of the compounds, providing a wide range of experimental activities and structural diversity
for model building. The 3D-QSAR model for 5-HT2A-R contained 54 and 26 compounds (Supplementary Table
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1), the model for D2-R consisted of 49 and 24 compounds (Supplementary Table 2) and the H1-R 3D-QSAR
model contained 32 and 16 compounds in the training and test sets, respectively (Supplementary Table 3).

3D-QSAR model validation
The created 3D-QSAR models were evaluated by applying the internal and external validation procedure with
the aim to confirm their reliability and predictability. In quantitative activity prediction, statistical parameters,
including predicted residual sum of squares (PRESS), cross-validated squared correlation coefficient (Q2) and root
mean square error of estimation (RMSEE), are widely used as statistical metrics of internal model predictability
and robustness [68]. They were calculated by Equations 1–3 considering compounds from the training set only.

PRESS =
n∑

i=1

e 2
(i ) (Equation 1)

Q2 = 1 − PRESS∑
(Yobs(training) − Y obs(training))

2 (Equation 2)

RMSEE =

√
PRESS

n
(Equation 3)

The e(i) corresponds to the difference between the observed and predicted Y values, whereas n defines the number
of compounds in the training set. Observed (experimental) pKi value for the training set compounds is denoted by
Yobs(training), while Ȳ training represents the average pKi value. Models with good predictive power should have Q2

value higher than 0.50, while RMSEE value should be as small as possible [68–70].
Although the high value of Q2 is very important for model validation, it is not a sufficient parameter to describe

the predictive potential of the created 3D-QSAR model for the new dataset [69,71]. For that reason, it is necessary
to perform model validation by using the external, test set, molecules. In order to assess the external capability of
the created models, parameters such as determination coefficient (R2

pred) and root mean square error of prediction
(RMSEP), defined in Equation 4 and Equation 5, respectively, were calculated.

R2
pred = 1 − PRESS∑

(Yobs(test) − Y obs(training))
2 (Equation 4)

RMSEP =

√
PRESS

n
(Equation 5)

The parameter Yobs(test) corresponds to an observed pKi value of the molecules from the test set, while Ȳtraining

represents an average pKi value calculated for the compounds from the training set. In Equation 5, n represents
the number of test set compounds. 3D-QSAR models with high predictive power should have R 2

pred higher than
0.50 and a low value of RMSEP (≤2 RMSEE) [68,70,71].

Moreover, for deeper analysis of the created models, the authors applied r 2
metrics (r 2

m, r/ 2
m, r- 2

m and �r
2

m) validation [68,72]. These statistical parameters are not dependent on the Ȳtraining value, enabling them to more
precisely describe the external predictability of the created 3D-QSAR models. The following parameters, r 2

m and
r/ 2

m, were calculated by Equation 6 and Equation 7:

r 2
m = r 2(1 −

√
|r 2 − r 2

0 |) (Equation 6)

r /2
m = r 2(1 −

√
|r 2 − r /2

0 |) (Equation 7)

where r represents the correlation between observed and predicted pKi values, while the intercept r0 was obtained
by interchanging the axes. The values of r 2

m, r/ 2
m as well as their average value (r-2

m) should be close and greater
than 0.50, while the absolute difference between r 2

m and r/ 2
m (�r 2

m) should be lower than 0.20 for an acceptable
model [68,71,73].
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Applicability domain
Establishment of the applicability domain (AD) is one of the five principles proposed by the Organization for
Economic Cooperation and Development (OECD) and should be followed in the process of building reliable and
acceptable 3D-QSAR models [74]. It actually represents the chemical structure space defined with the properties
of the training set compounds [75]. The activity prediction of new compounds might be considered accurate only
if it falls within the defined AD of the created 3D-QSAR model. For the present work, the authors employed the
leverage approach (Williams plot) using SPSS software [76,77]. The warning leverage value (h*) was calculated by
Equation 8.

h∗ = 3(p + 1)/n (Equation 8)

The number of the model variables is represented by p, while n denotes the number of compounds in the training
set (Equation 10). If the calculated leverage value of a molecule is higher than the warning value (h*), the prediction
is not completely reliable, since the compound is outside the defined AD.

Fragment-based drug design
The fragment-based drug design (FBDD) method was employed in order to rationally design novel potent
antagonists with the desired target profile. It presents an attractive approach for rapid and efficient screening of the
fragment libraries, offering good starting points for designing novel compounds [78]. In particular, two commercially
available fragment libraries, the General Fragment Library and Enamine Essential Fragment Library, were used to
find the most suitable building blocks to act as lead skeletons for developing high-affinity ligands against protein
targets. The General Fragment Library was selected due to the largest number of fragments among others available
from Life Chemicals, Inc. It contained nearly 51,000 fragment-like molecules that were filtered on molecular
weight (MW) ≤300 as well as lipophilicity expressed as the calculated octanol/water partition coefficient (ClogP)
≤3.0. Moreover, the Enamine Essential Fragment Library obtained from Enamine Ltd was added with the aim
to further expand the chemical diversity of the final fragment library. It comprised of 320 fragments with MW
<250, number of HBAs/HBDs <3, ClogP <2.5 and topological polar surface area (TPSA) <60 Å. Structural
moieties of ChEMBL90882 and ziprasidone were used as templates for fragment-based screening of the previously
mentioned databases by the Fingerprints for Ligands and Proteins (FLAP) program v2.2 [79,80]. Selected compounds
exhibited high affinities for both 5-HT2A-Rs and D2-Rs and were found to interact with the key pocket residues,
therefore representing good starting points for further rational drug design.

First, the General Fragment Library was pre-filtered to reduce the size of the dataset. All fragments from the
library were inspected in terms of shape similarity to the selected templates, 1,2-benzothiazol and 1,3-dihydro-2-
oxindol from ziprasidone and dibenzoxepin from ChEMBL90882. Subsequently, fragments with the best Glob-Sum
similarity scores (which represent the sum of scores from grid probes), were chosen to build a new database for more
precise screening. The final created database contained pre-filtered fragments of the General Fragment Library and
Enamine database fragments. For each molecule (fragments from library and templates), grid MIFs were calculated
using four probes representing the most important interaction types, such as HBA and HBD, hydrophobic and
shape [81]. After determining energetically favorable interactions, MIFs were condensed into four pharmacophoric
points, termed quadruplets. FLAP was further utilized to align the fragments from the database to the selected
templates and to discover the best overlap by comparing the quadruplets. Basically, the FLAP similarity represents
the Tanimoto similarity between the candidate MIF and the template MIF. It is based on the assumption that
fragments with higher similarity are more likely to bind to the receptor in the same manner. The Glob-Sum similarity
score was used to select the best aligned fragments for subsequent rational drug design of novel compounds by the
fragment-linking approach [78].

In silico absorption, distribution, metabolism, excretion & toxicity profiling
In silico prediction of the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of
compounds is one of the most significant steps in the process of rational drug design [82]. In this study, the results
obtained from ADMET Predictor software [83] were assembled and used for a description of the physico-chemical
and pharmacokinetic properties of all the designed antagonists, along with lead molecules. The best candidates with
an optimal pharmacokinetic profile, synthetic tractability and predicted in silico activity were chosen for further
optimization.
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Results & discussion
In recent times, a polypharmacological strategy for the treatment of complex neurological and mental diseases has
been proposed as a key concept in the development of novel CNS drug candidates that act on multiple targets
simultaneously [84]. Herein, the authors describe a pharmacophore of dual 5-HT2A/D2-R antagonists, taking into
account their H1-R activity by employing different CADD approaches.

MD & molecular docking
In the current study, nine different MD simulations of the studied targets in complexes with reference ligands were
performed. 5-HT2A-Rs, D2-Rs and H1-Rs represent membrane-embedded proteins, which belong to the GPCR
family. It has been found that membrane lipids have a significant stabilization effect on protein conformational
states in MD simulations [85]. Furthermore, different analytical tools were used to investigate the quality of the
performed MD simulations as well as to ensure that they lasted long enough to reach equilibrium.

The RMSD is one of the most frequently used analyses for revealing the conformational changes and structure
stability of a protein. It calculates the distance between atomic coordinates in the trajectory. Lower deviations
(usually, <2 Å) indicate that there are no significant conformational changes in the system, which could be
considered equilibrated [86]. In accordance with the aim to assess the stability of studied complexes during the
simulation time, RMSD plots for the receptor backbone, ligand and residues in the binding site were generated
(Supplementary Figures 6–8). From the obtained results, the authors concluded that receptor backbone RMSD
values for all complexes remained steady after approximately 25 ns, and some even before. After 15 ns, the backbone
RMSD values of 5-HT2A-R and D2-R in complexes with clozapine (Supplementary Figures 6B & 7B) kept stable
around 1.2 Å and 1.6 Å, respectively. The RMSD values for the 5-HT2A-R–ziprasidone and D2-R–ziprasidone
complexes (Supplementary Figures 6F & 7F) remained stabilized around 1 Å and 1.4 Å after 25 ns, while the values
of the 5-HT2A-R–lumateperone and D2-R–lumateperone complexes (Supplementary Figures 6J & 7J) slightly
floated around 1.4 Å and 1 Å, respectively. Moreover, it can be observed that the backbone RMSD values for
clozapine and ziprasidone complexes with H1-R (Supplementary Figure 8B & F) were stabilized around 1.5 Å
and for lumateperone around 1.2 Å (Supplementary Figure 8J) after approximately 5 ns, indicating that these
complexes were also stable. Ligand RMSD fluctuations less than 1 Å in all complexes indicated that the simulated
compound was stabilized in the receptor binding pocket in its most favorable conformation (Supplementary Figures
6–8C, G & K). Besides, RMSD plots of residues in the binding region were generated and the obtained results
revealed that these residues maintained an overall stability in the studied complexes during 50 ns of MD simulation
(Supplementary Figures 6–8D, H & L). Finally, deviations in measured RMSD values were lower than 2 Å, which
indicated the overall stability of the studied complexes and that they undergo no significant conformational changes.

Moreover, to provide deeper stability analysis of the performed MD simulations, the number of hydrogen bond
interactions in all systems was calculated [87]. Hydrogen bond (H-bond) was defined by the following criteria,
representing the distance between donor and acceptor lower or equal to 3.5 Å and the angle lower or equal to
30◦. As presented in Supplementary Figure 9, the observed H-bond interactions between the studied ligands and
proteins were consistent throughout the 50 ns production run and were in agreement with those used for final
analysis. Namely, clozapine was found to make only one H-bond interaction with all three studied targets through
the whole run of 50 ns (Supplementary Figure 9A, D & G). This interaction was observed between clozapine
and conserved amino acid Asp3×32 (Asp155 for 5-HT2A-R, Asp114 for D2-R and Asp107 for H1-R). Moreover,
from Supplementary Figure 9B, the authors conclude that the number of H-bonds between ziprasidone and 5-
HT2A-R remained stable after 25 ns until the end of the simulation, which is in concordance with the RMSD
plots. On the other hand, D2-R and H1-R formed two interactions with ziprasidone that were stable from the
beginning of the simulation (Supplementary Figure 9E & H). The number of H-bonds between lumateperone and
5-HT2A-R fluctuated between two and three but remained at two for the last 20 ns (Supplementary Figure 9C). In
accordance with the molecular docking study, lumateperone formed only one H-bond interaction with D2-R and
H1-R, which was stable during all 50 ns of MD simulation (Supplementary Figure 9F & I). In summary, the
high stability of H-bond interactions suggested good coupling between the studied complexes, without significant
fluctuations during the simulated time.

To further examine the overall accuracy of the MD simulation results, the SASA of the binding sites was
calculated. The SASA parameter could be used to describe the accessibility of the protein as well as to predict
potential conformational changes [88]. The results, presented in Supplementary Figure 10, suggested that the SASA
values were consistent in all studied complexes during the simulated time. For the last 25 ns, fluctuations were less
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Figure 1. Plots of observed versus predicted negative logarithmic values of the inhibition constant for created
3D-quantitative structure–activity relationship models. (A) 5-HT2A receptor. (B) D2 receptor. (C) H1 receptor.
pKi: Negative logarithm of inhibition constant (-logKi).

than 4 nm2 in all systems. Therefore, the obtained results additionally verified the stability of clozapine, ziprasidone
and lumateperone in the binding sites of 5-HT2A-R, D2-R and H1-R.

Overall, considering the results obtained from RMSD and SASA analysis, as well as H-bond measurements,
the authors conclude that the performed MD simulations were long enough to reach equilibrium of the studied
complexes during 50 ns of simulated time. Moreover, these findings indicated good stability of all trajectories,
laying a good foundation for further molecular docking and 3D-QSAR studies.

After validation of the MD results, the last snapshot of each simulation was used to extract the antagonist-bound
state of the receptor in complex with the reference ligand in its most probable bioactive conformation. The binding
mode and molecular interactions of clozapine (Supplementary Figures 6–8A), ziprasidone (Supplementary Figures
6–8E) and lumateperone (Supplementary Figure 6–8I) within the active sites of 5-HT2A-R, D2-R and H1-R were
evaluated by the Discovery Studio Visualizer program. All essential interactions that play a significant role in
5-HT2A-R, D2-R and H1-R binding were observed, including VdW interactions, H-bonding interactions and an
electrostatic interaction with Asp3×32 (Asp155 for 5-HT2A-R, Asp114 for D2-R and Asp107 for H1-R) [29–31].

Furthermore, all studied ligands were docked into the corresponding receptor conformation. The final ligand’s
pose was chosen based on the docking score and binding mode similar to the reference ligand. The results from the
molecular docking studies are presented in Supplementary Tables 4–6.

With the aim to reproduce binding geometry of the co-crystallized ligands, the authors performed a redocking
analysis. The obtained RMSD values were as follows: 0.764, 1.257 and 0.889 for 5-HT2A-R–risperidone, D2-R–
risperidone and H1-R–doxepin, respectively. Moreover, for further validation, the RMSD values of the heavy atoms
between the docked and original conformations from MD simulations were calculated and the obtained values
were 1.44, 0.64 and 1.54 for the 5-HT2A-R–clozapine, 5-HT2A-R–ziprasidone and 5-HT2A-R–lumateperone
complexes, respectively. Slightly better RMSD values were obtained for the D2-R–clozapine, D2-R–ziprasidone
and D2-R–lumateperone complexes: 0.20, 0.60 and 0.65, respectively. Additionally, RMSD values obtained for the
H1-R–clozapine, H1-R–ziprasidone and H1-R–lumateperone complexes were 1.18, 1.27 and 1.76, respectively.
Since all values were below a widely accepted RMSD threshold value of 2.00 Å, the authors conclude that the
results of the molecular docking analysis could be considered reliable [89].

3D-QSAR study
MD simulations followed by molecular docking studies were performed to more accurately predict the bioactive
conformations of all studied ligands. The obtained conformers were used for calculation of the most important
molecular descriptors that represent the structural features responsible for the relevant biological activity. In fact,
three regression models were built, for 5-HT2A-R, D2-R and H1-R, in order to describe the pharmacophore of
dual 5-HT2A/D2-R antagonists with low affinity to H1-R. The results are presented inSupplementary Tables 7–9,
while the plots of observed versus predicted pKi values for the whole datasets are shown in Figure 1 (5-HT2A-R
[A], D2-R model [B] and H1-R [C] 3D-QSAR model).
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Table 1. Results of internal and external validation of created 3D-quantitative structure–activity relationship models.
Model Q2 R2 RMSEE R 2

pred RMSEP r 2
m r /2

m r -2
m � r 2

m (r 2-r 2/
0)/r2 k′

5-HT2A

receptor
0.66 0.92 0.43 0.82 0.38 0.71 0.81 0.76 0.10 0.01 0.97

D2 receptor 0.61 0.81 0.36 0.77 0.25 0.69 0.76 0.72 0.08 0.00 1.01

H1 receptor 0.76 0.91 0.34 0.78 0.41 0.78 0.60 0.69 0.18 0.07 1.01

Criteria �0.50 �0.70 �0.50 ≤2 × RMSEE �0.50 �0.50 �0.50 �0.20 �0.10 0.85 ≤k′

≤1.15

k′: (� Yobs × Ypred)/� (Yobs)2; Q 2: Cross-validated squared correlation coefficient; R 2: Determination coefficient for training set; RMSEE: Root mean square error of estimation; R
2

pred: Determination coefficient for test set; RMSEP: Root mean square error of prediction; r 2
m: Coefficient of determination calculated according to equation 6; r/2

m: Coefficient of
determination calculated according to equation 7; r -2

m: Average value of r 2
m and r/2m; � r 2

m: Absolute difference between r 2
m and r/2m; r 2: r 2

metrics determination coefficient
(with intercept); r2/0: r 2

metrics determination coefficient (without intercept); .

Table 2. Summary of the most important variables with positive and negative influence on 5-HT2A receptor
antagonistic activity.
Variable Node pair Distance (Å) Comment

var176 N1-N1
(positive)

16.00–16.40 Two HBA groups at the optimal distance range, essential for more potent ligands from
cluster 2

var257 TIP-TIP
(positive)

21.20–21.60 Edge-to-edge distance in cluster 2 compounds that have significant enhancement potency
toward 5-HT2A receptor

var263 TIP-TIP
(negative)

23.60–24.00 Unfavorable spatial distance between two steric regions in a few long-sized molecules

var288 DRY-O
(positive)

6.40–6.80 Distance through molecule from hydrophobic region to protonated nitrogen as HBD in all
studied compounds

var379 DRY-N1
(positive)

15.60–16.00 Most favorable distance between hydrophobic region and HBA, associated with the
majority of compounds from clusters 2 and 3

var447 DRY-TIP
(positive)

15.60–16.00 Similar to var257, representing a positive influence of optimal spatial distance between
hydrophobic and steric regions in clusters 2 and 3

var460 DRY-TIP
(negative)

20.80–21.20 Similar to var263, representing an unfavorable impact of hydrophobic and steric regions
within longer spatial distance

var510 O-N1
(positive)

13.60–14.00 HBD and HBA groups positioned within the particular distance, in a majority of more
potent compounds from cluster 2

var644 N1-TIP
(negative)

12.80–13.20 Associated with less potent compounds from cluster 1 that have HBA and steric region at
the lower distance range

var662 N1-TIP
(positive)

20.00–20.40 Similar to var176 and var379, HBA group and steric region that are positioned at the
defined distance; associated with cluster 2 compounds

DRY: Hydrophobic regions; HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; N1: HBA regions; O: HBD regions; TIP: Steric hot spots.

In an effort to develop reliable and predictable 3D-QSAR models, an extensive statistical validation was performed
(Table 1). High values of R2 and Q2 as well as low RMSEE values indicated good internal predictability for all
created models. However, to demonstrate their real predictive capability, compounds from the test set were used
for external model validation. The values of the following statistical parameters: R 2

pred, r 2
m, r/ 2

m and r- 2
m greater

than 0.50, �r 2
m value lower than 0.2 and low RMSEP values confirmed the predictive potential and stability of

the created models, which could be employed for further quantitative activity prediction of the new analogues.
The PLS coefficient plots describing the contribution of each variable in the model are shown in Supplementary

Figures 11–13. The most important variables for the model interpretation are marked with numbers and described
in Tables 2–4. Variables with the positive coefficients are in direct correlation to biological activity, while those with
negative coefficients possess an opposite correlation.

Pharmacophore analysis of 5-HT2A-R ligands
A 3D-QSAR model for 5-HT2A-R enabled the authors to deeply analyze the crucial structural features required for
the high binding affinity of the studied antagonists. Compared with others, the lower potency of the compounds
from cluster 1 on this receptor (pKi5-HT2A-R: 5.92–8.80) can be described with the presence of the only positive
variable, DRY-O (var288) (Figure 2A). This variable emphasizes the distance through molecule from the hydropho-
bic region to protonated nitrogen as HBD. A less potent compound from this group, ChEMBL1277585, possesses
a high value of the negative N1-TIP (var644) variable (Figure 2B), indicating an unfavorable impact of HBA and
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Table 3. Summary of the most important variables with positive and negative influence on D2 receptor antagonistic
activity.
Variable Node pair Distance (Å) Comment

var43 DRY-DRY
(negative)

17.20–17.60 Unfavorable interaction between two hydrophobic regions at a longer distance

var149 N1-N1
(positive)

7.60–8.00 Optimal distance between two HBA groups, essential for more potent ligands

var296 DRY-O
(positive)

14.40–14.80 Hydrophobic region and HBD group within the particular distance, characteristic for
cluster 2 compounds

var422 DRY-TIP
(positive)

12.80–13.20 Most favorable distance between hydrophobic and steric regions, inherent in more potent
compounds from clusters 2 and 3

var440 DRY-TIP
(negative)

20.00–20.40 Similar to var43, representing a negative influence of longer spatial distance between
hydrophobic and steric regions

var470 O-N1
(positive)

6.00–6.40 HBD and HBA groups positioned within the particular distance, presented in all three
clusters

var534 O-TIP
(negative)

5.60–6.00 Present for the majority of less potent compounds from cluster 1 that have HBD and steric
region at lower distance range

var551 O-TIP
(positive)

12.40–12.80 Distance through molecule between protonated nitrogen as HBD and steric region for all
three clusters

var563 O-TIP
(positive)

17.20–17.60 Similar to var296, HBD group and steric region that are positioned at the defined distance;
associated with cluster 2 compounds

var635 N1-TIP
(positive)

20.00–20.40 Present for the majority of cluster 2 and 3 compounds, describing HBA and steric regions
within defined spatial distance.

DRY: Hydrophobic regions; HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; N1: HBA regions; O: HBD regions; TIP: Steric hot spots.

Table 4. Summary of the most important variables with positive and negative influence on H1 receptor antagonistic
activity.
Variable Node pair Distance (Å) Comment

var149 N1-N1
(negative)

10.00–10.40 Negative influence of two HBA groups within defined distance range, related to cluster 2
compounds

var217 TIP-TIP
(positive)

12.40–12.80 Edge-to-edge distance of cluster 1 compounds that have positive influence on H1 receptor
binding activity

var237 TIP-TIP
(negative)

20.40–20.80 Edge-to-edge distance of cluster 2 compounds that negatively correlates with H1 receptor
binding activity

var275 DRY-O
(positive)

10.80–11.20 Distance through molecule between protonated nitrogen as HBD and steric region,
essential for all compounds

var343 DRY-N1
(negative)

13.20–13.60 Unfavorable distance between hydrophobic region and HBA group, mostly characteristic
for cluster 2 compounds

var398 DRY-TIP
(positive)

10.40–10.80 Similar to var217; defines optimal spatial distance between hydrophobic and steric region
in molecule

var408 DRY-TIP
(negative)

14.40–14.80 Represents longer distance range between hydrophobic and steric region, inherent in
cluster 2 compounds

var458 O-N1
(negative)

9.60–10.00 Similar to var149, unfavorable distance between HBD and HBA groups presented in cluster
2 compounds

var534 O-TIP
(negative)

15.20–15.6 Negative impact of shorter distance between HBD (carboxyl) group and steric region
presented in cluster 1 compounds

var599 N1-TIP
(negative)

16.40–16.80 Similar to var149 and var458, associated with cluster 2 compounds that have HBA and
steric region at the defined distance range

DRY: Hydrophobic regions; HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; N1: HBA regions; O: HBD regions; TIP: Steric hot spots.

steric region at the lower distance range. Moreover, these compounds lack important positive variables, such as
N1-N1 (var176), TIP-TIP (var257), DRY-N1 (var379), DRY-TIP (var447), O-N1 (var510) and N1-TIP (var662),
which are expressed for the majority of the more potent ligands as in cluster 2 (pKi: 7.00–11.00) and cluster 3
(pKi: 6.15–9.27). Briefly, these variables define optimal distance through molecule between hydrophobic, steric and
H-bond donating regions in medium-sized molecules, such as ziprasidone and lumateperone (Figure 2C & E). The
variables TIP-TIP (var257: 21.20–21.60 Å) and DRY-TIP (var447: 15.60–16.00 Å) define optimal edge-to-edge
distance of more potent molecules (Figure 2C & E). They indicate that the presence of two heterocyclic rings
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Figure 2. The most important positive (red) and negative (blue) variables from created 3D-quantitative
structure–activity relationship model for 5-HT2A receptor. (A) ChEMBL366164 and (B) ChEMBL1277585 from cluster 1.
(C) ChEMBL708-ziprasidone and (D) ChEMBL253233 from cluster 2. (E) ChEMBL3233142-lumateperone and (F)
ChEMBL3233416 from cluster 3. The steric hot spots (TIP) are presented in green, hydrophobic regions (DRY) in
yellow, hydrogen bond acceptor regions (N1) in blue and hydrogen bond donor regions (O) in red.

at a particular distance possesses significant enhancement potency toward this receptor. In contrast, the negative
variables TIP-TIP (var263: 23.60–24.00 Å) and DRY-TIP (var460: 20.80–21.20 Å) imply that any increase in
the distance between these regions might lead to a decrease in the biological activity of 5-HT2A-R antagonists
(Figure 2D & F). Furthermore, the majority of more potent molecules have an HBA group, mainly carboxyl, at
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the optimal spatial distance from one of the molecular termini, as described by variables DRY-N1 (var379: 15.60–
16.00 Å) and N1-TIP (var662: 20.00–20.40 Å) (Figure 2C & E). Additionally, the importance of H-bonding
interactions in the binding site of 5-HT2A-R was confirmed with variables N1-N1 (var176: 16.00–16.40 Å) and
O-N1 (var510: 13.60–14.00 Å) (Figure 2C). They represent HBA and HBD groups of both heterocyclic rings
positioned within a particular distance, associated with more potent compounds. Confirming the reliability of
the created 3D-QSAR model, variable DRY-O (var288: 6.40–6.80 Å) was pronounced in all studied compounds
describing the importance of protonated nitrogen atom which form an essential interaction with highly conserved
aspartic acid (Asp3×32) [90]. Detailed interpretation of each variable is provided in the supporting material.

Interactions in the binding site of 5-HT2A-R
A further molecular docking study was performed with the aim to support the conclusions from 3D-QSAR analysis.
5-HT2A-R–clozapine complex conformation was used to dock ligands from cluster 1 (Figure 3A & B), while ligands
from cluster 2 (Figure 3C & D) and cluster 3 (Figure 3E & F) were docked into 5-HT2A-R–ziprasidone and 5-
HT2A-R–lumateperone conformations, respectively. Detailed binding mode interaction of the studied antagonists
is provided in the supporting material. In summary, the tricyclic ring of compounds from cluster one occupies only
the bottom hydrophobic cleft of 5-HT2A-R defined with the key residues on TM3, TM5 and TM6: Val1563×33,
Ser1593×36, Thr1603×37, Ile1633×40, Ile2104×61, Phe2345×39, Ile2375×42, Gly2385×43, Ser2425×461, Phe2435×47,
Trp3366×48 and Phe3406×52 (Figure 3A & B). However, the introduction of another hydrophobic moiety above the
salt bridge involves an extended conformation in the binding site of 5-HT2A-R (Figures 3C–F). Amino acids such
as Ser1312×60, Ile1352×64, Tyr139, Trp1513×28, Ile1523×29, Leu22845×51, Leu22945×52, Asn3637×35, Val3667×38

and Tyr3707×42 on TM2, TM3, ECL2 and TM7 enclose the oxindole ring and benzene ring of ziprasidone and
lumateperone, respectively (Figure 3C & E). The created 3D-QSAR model extracted TIP-TIP (var263) and DRY-
TIP (var460) variables, which imply that the presence of these heterocyclic rings positively correlates with 5-HT2A-R
binding affinity. All compounds exhibited strictly conserved electrostatic interaction between Asp1553×32 and the
protonated nitrogen of the piperazine ring (Figure 3), previously confirmed with a 3D-QSAR study (DRY-O,
var288). Furthermore, the majority of the more potent compounds from cluster 2, which possess a carboxyl group,
such as ziprasidone, were found to make H-bond interactions with Asn3637×35 (Figure 3C). The importance of
this polar interaction was also confirmed with extracted variables from the 3D-QSAR model (N1-N1, var176;
DRY-N1, var379; and N1-TIP, var662) as well as with the authors’ previous study [35].

Pharmacophore analysis of D2-R ligands
Analysis of the most important GRIND variables with positive and negative influence on biological activity provided
insight into the basic ligand structural requirements for high binding affinity to D2-R. Generally, compounds from
cluster 1 (pKi: 5.66–8.64) are less potent compared with compounds from cluster 2 (pKi: 7.17–9.05). 3D-QSAR
model analysis showed that N1:N1 (var149), O-N1 (var470) and O-TIP (var551) variables possess a strong
positive influence on the potency of molecules from cluster 1 (Figure 4A). GRIND variable N1-N1 (var149:
7.60–8.00 Å) describes the proximity between two HBA groups, the oxygen atom of the dibenzoxepin ring and
the nitrogen atom of the piperazine ring (Figure 4A). The significance of the protonated nitrogen atom of the
piperazine ring in the binding affinity was confirmed with variables O-N1 (var470: 6.00–6.40 Å) and O-TIP
(var551: 12.40–12.80 Å) (Figure 4A). However, their lower activity can be described with the absence of the
important positive variables such as DRY-O (var296), O-TIP (var563) and N1-TIP (var635), as well as high values
of negative variable O-TIP (var534) (Figure 4B), calculated for compounds bearing a shorter distance between
protonated nitrogen as HBD and terminal methyl group asa steric hot spot (Figure 4B). Through analysis of the
most active compounds from cluster two , ziprasidone and cluster three, ChEMBL3233413, the authors concluded
that the introduction of two heterocyclic rings, at the optimal distance range of 12.80–13.20 Å defined with
var422 (DRY-TIP), increases the potency of compounds toward D2-Rs (Figure 4C & E). This may contribute to
better ligand fitting into the receptor binding site. Further increase in spatial distance between hydrophobic and
steric regions or two hydrophobic regions shows diminutive effect on the biological activity (var440, DRY-TIP:
20.00–20.40 Å; var43, DRY-DRY: 17.20–17.60 Å) (Figure 4D & F). Moreover, variables such as var149 (N1-N1:
7.60–8.00 Å), var296 (DRY-O: 14.40–14.80 Å), var470 (O-N1: 6.00–6.40 Å), var563 (O-TIP: 17.20–17.60 Å)
and var635 (N1-TIP: 20.00–20.40 Å) imply that the presence of HBA and HBD groups in both heterocyclic rings
may be important for establishing favorable H-bonding interactions with the polar amino acids in the active pocket
(Figure 4C). Nevertheless, the absence of HBD and HBA groups at the optimal spatial distance from the tetracyclic
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Figure 3. Representation of binding modes in the active site of 5-HT2A receptor. (A) ChEMBL366164. (B)
ChEMBL1277585. (C) ChEMBL708–ziprasidone. (D) ChEMBL253233. (E) ChEMBL3233142–lumateperone. (F)
ChEMBL3233416. The π–π and alkyl–π interactions are depicted in purple, hydrogen bond interactions in green and
salt bridge in orange. Outlined amino acids form Van der Waals interactions.
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Figure 4. The most important positive (red) and negative (blue) variables from created 3D-quantitative
structure–activity relationship model for D2 receptor. (A) ChEMBL90882 and (B) ChEMBL6437 from cluster 1. (C)
ChEMBL708-ziprasidone and (D) ChEMBL400236 from cluster 2. (E) ChEMBL3233413 and (F) ChEMBL3233416 from
cluster 3. The steric hot spots (TIP) are presented in green, hydrophobic regions (DRY) in yellow, hydrogen bond
acceptor regions (N1) in blue and hydrogen bond donor regions (O) in red.
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ring potentially affected the potency of compounds from cluster 3. Notably, var551 (O-TIP: 12.40–12.80 Å) was
expressed in all ligands describing distance through molecule from the protonated nitrogen atom as HBD to the
steric region around the heterocyclic ring. A detailed description of each variable is presented in the supporting
material.

Interactions in the binding site of D2-R
Furthermore, the molecular docking method was used to reveal interactions in the binding site between the studied
ligands and D2-R, as well as to compare the obtained findings with 3D-QSAR pharmacophore analysis. Cluster 1
compounds were docked into D2-R–clozapine complex conformation, and the binding modes of ChEMBL90882
and ChEMBL6437 are presented in Figure 5A & B. Conformation of D2-R in complex with ziprasidone was
used to dock ligands from cluster 2 (Figure 5C & D), while tetracyclic quinoxaline derivatives from cluster 3 were
docked into D2-R conformation after MD simulation with lumateperone (Figure 5E & F). Integrating the binding
mode analyses of structurally diverse antagonists, presented in the supporting material, the authors summarized
that compounds with two heterocyclic rings at the optimal distance perfectly fit into the active pocket of D2-R
defined with residues from TM2, 3, 5, 6 and 7 and ECL1 [30,32,91]. Unlike cluster 2 and 3 compounds, polycyclic
aromatic derivatives from cluster 1 show weaker affinity for D2-R, which may be confirmed with lower values of
AD Vina docking scores (Supplementary Table 5). All compounds form a salt bridge interaction with Asp1143×32,
while only those that possess an HBD group, at a certain distance from the hydrophobic region, were found to make
an H-bond interaction with Ser4097×35. This interaction is inherent in more potent compounds, as demonstrated
with several variables in the 3D-QSAR study (DRY-O, var296; O-TIP, var563). Moreover, it may be important for
maintaining the stability of a ligand in complex with D2-R, as well as binding selectivity.

Comparative analysis of 3D-QSAR & molecular docking results for 5-HT2A-Rs, D2-Rs & H1-Rs
Additionally, to fulfill the criteria of multi-target ligands with a desired selectivity profile, the authors performed
3D-QSAR and molecular docking studies on known H1-R antagonists (Figure 6). A further focus of the study was
to compare the obtained results with findings from 5-HT2A-R and D2-R analyses.

Both, 5-HT2A-R and D2-R 3D-QSAR models revealed a favorable distance range between two heterocyclic
rings, beneficial for high binding affinity, through variables TIP-TIP (var257) and DRY-TIP (var447) from the
5-HT2A-R study and DRY-TIP (var422) from the D2-R study. On the other hand, the 3D-QSAR model for H1-R
revealed that the presence of two hydrophobic regions at a longer spatial distance leads to a decrease in biological
activity (TIP-TIP, var237; DRY-TIP, var408) (Figure 6B). Moreover, GRIND variables TIP-TIP (var217) and
DRY-TIP (var398) describing the molecular shape of small-sized molecules of cluster 1 positively correlate with
H1-R antagonistic activity (Figure 6A). These findings agree well with experimentally obtained results showing that
clozapine-like compounds (cluster 1) are more potent on H1-Rs compared with 5-HT2A-Rs and D2-Rs, whereas it
is the opposite for ziprasidone-like compounds (cluster 2). Furthermore, the docking scores of cluster 1 compounds
in complex with H1-R (Supplementary Table 6) were significantly higher than those obtained with docking into
5-HT2A-R (Supplementary Table 4) and D2-R (Supplementary Table 5).

Based on insights gained from the created 3D-QSAR models for 5-HT2A-R and D2-R, the authors concluded
that the presence of HBD and HBA groups at the optimal distance from the heterocyclic ring, which also possesses
HBA properties, may significantly increase the bioactivity of dual antagonists. GRIND variables DRY-N1 (var379)
and N1-TIP (var662) from the 5-HT2A-R 3D-QSAR model as well as N1-TIP (var635) from the D2-R 3D-QSAR
model precisely describe distance through molecule between HBA group and heterocyclic ring, which perfectly fits
into the bottom hydrophobic cleft. In addition, O-N1 (var510, 5-HT2A-R), DRY-O (var296, D2-R) and O-TIP
(var563, D2-R) variables highlight the importance of the HBD group at a similar distance range. In contrast, the
H1-R model revealed that variables N1-N1 (var149), DRY-N1 (var343), O-N1 (var458), O-TIP (var534) and
N1-TIP (var599) have a negative impact on bioactivity, suggesting that the presence of these groups may contribute
to better selectivity of dual antagonists.

To facilitate a comparison between the studied receptors, the GPCR database was used to align residues in the
binding site by their position (Supplementary Figure 14) [92]. As demonstrated in Supplementary Figure 14, highly
conserved residues among the studied aminergic receptors are at positions 3×32, 3×40, 6×44, 6×48 and 6×52.
However, certain differences were observed at positions 3×33 and 5×40 of H1-R, where residues Tyr108 and
Lys191, respectively, may form H-bond interactions and contribute to high affinity binding to H1-R [31]. Besides,
at position 7×35, both 5-HT2A-Rs and D2-Rs possess polar amino acids, Asn363 and Ser409, respectively, whereas
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Figure 5. Representation of binding modes in the active site of D2 receptor. (A) ChEMBL90882. (B) ChEMBL6437. (C)
ChEMBL708-ziprasidone. (D) ChEMBL400236. (E) ChEMBL3233413. (F) ChEMBL3233416 in the active site of D2

receptor. The π–π and alkyl–π interactions are depicted in purple, hydrogen bond interactions in green and salt
bridge in orange. Outlined amino acids form Van der Waals interactions.
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Figure 6. 3D-quantitative structure–activity relationship analysis and molecular docking study for H1 receptor. The
most important positive (red) and negative (blue) variables for ChEMBL42-clozapine (A) and ChEMBL708-ziprasidone
(B), obtained from the created 3D-quantitative structure–activity relationship model.The steric hot spots (TIP) are
presented in green, hydrophobic regions (DRY) in yellow, hydrogen bond (H-bond) acceptor regions (N1) in blue and
H-bond donor regions (O) in red. Representation of binding modes of ChEMBL42-clozapine (C),
ChEMBL708-ziprasidone (D) and ChEMBL3233142-lumateperone (E) within H1 receptor. The π–π and alkyl–π

interactions are depicted in purple, H-bond interactions in green and salt bridge in orange. Outlined amino acids
form Van der Waals interactions.

future science group www.future-science.com 979



Research Article Radan, Djikic & Nikolic

H1-Rs have Met451. Unlike methionine, which forms only hydrophobic interactions, asparagine and serine can
make H-bond interactions with ligands in the binding site. This finding is in concordance with previously described
3D-QSAR variables as well as molecular docking results that revealed interaction with these residues. Moreover,
all created 3D-QSAR models underline the importance of tertiary amine as HBD, which interacts with Asp155
for 5-HT2A-R, Asp114 for D2-R and Asp107 for H1-R at position 3×32 (var288, 5-HT2A-R; var551, D2-R; and
var275, H1-R).

In addition, to inspect the binding interactions of lumateperone in the active site of H1-R, the authors performed
MD and molecular docking studies (Figure 6E). They demonstrated that it occupies the binding site of H1-R in the
opposite conformation from binding to D2-R and 5-HT2A-R, therefore involving more hydrophobic interactions
in the upper hydrophobic cleft (Figure 6E). Unlike clozapine, which is a tricyclic derivate and fits much deeper
in the lower aromatic region of the H1-R, lumateperone forms fewer hydrophobic contacts with residues in this
binding site (Figure 6C & E). In particular, non-conserved residue Trp1584×57 as well as Thr1123×37 were not
found to interact with lumateperone. Furthermore, compared with ziprasidone, which exhibits H-bond interaction
with Cys180 in ECL2, lumateperone was not observed to form any electrostatic interaction within the H1-R active
pocket (Figure 6D & E). All these factors contribute to the fact that lumateperone possesses a higher selectivity
profile for off-target histaminergic receptors compared with other antipsychotic medications [93].

Finally, the results obtained from the molecular docking and 3D-QSAR studies are complementary and validated
each other, revealing that the developed structure–activity relationship models for 5-HT2A-R, D2-R and H1-R are
reliable and may be further used to accelerate the design and identification of novel, potent dual antagonists of
5-HT2A/D2-Rs, with minimized activity on the histamine H1-R.

Applicability domain
As described in the ‘Materials & methods’ section, the leverage approach was performed to examine and visualize
the applicability domain of all the created 3D-QSAR models. The ten most important variables of each model
were extracted and the warning leverage values were calculated (0.61 for the 5-HT2A-R model, 0.63 for the D2-R
model and 0.97 for the H1-R model). The Williams plots in Supplementary Figures 15–17 suggest that neither
training nor test set compounds deviated from the determined domain of applicability. In conclusion, all developed
3D-QSAR models could be further used for reliable activity prediction of new, structurally similar compounds.

Rational drug design of new dual antagonists
The integrated use of MD, molecular docking and 3D-QSAR methods enabled the authors to compressively
investigate the pharmacophore of dual 5-HT2A/D2-R antagonists with low H1-R activity. The obtained findings
suggest that longer edge-to-edge distance of molecules showed a positive correlation with 5-HT2A/D2-R binding
activity, whereas it negatively correlated with H1-R activity. Furthermore, the presence of a heterocyclic ring (A)
with the HBA sites (such as heterocyclic nitrogen or oxygen atoms) at the optimal distance range from another ring
(B), which contains HBA but also HBD groups, could enhance ligand binding activity toward 5-HT2A-Rs and
D2-Rs (Figure 7). Molecular docking studies showed that these groups form important H-bonding interactions
with residues at positions 3×37 (Thr160 for 5-HT2A-R and Thr119 for D2-R) and 7×35 (Asn363 for 5-HT2A-R
and Ser409 for D2-R) in the bottom and upper hydrophobic cleft, respectively. In contrast, 3D-QSAR study
analysis revealed that the introduction of such substituents at longer distances decreases H1-R activity. Binding site
analysis of the studied targets also showed that differences in amino acid composition, especially at position 7×35
(Met451 for H1-R), have an important impact on achieving selectivity of dual antagonists against H1-R.

Following the determination of the crucial structural features for dual antagonists, design strategies were based
on modifications of two hydrophobic regions, A and B, separated with a well-established piperazine linker with
a positively charged nitrogen atom, important to retain an optimal aminergic receptor activity profile (Figure 7).
ChEMBL90882, ziprasidone and lumateperone were selected as lead compounds. Additionally, the authors em-
ployed the FBDD method to design novel potent compounds with good drug-like properties. Templates, 1,2-
benzothiazol and dibenzoxepin for hydrophobic region A, as well as 1,3-dihydro-2-oxindol for hydrophobic region
B, were chosen as attractive starting points, which possess a characteristic interaction profile with the studied
targets (Supplementary Table 10). They represent fragments of lead molecules, ChEMBL90882 and ziprasidone,
which perfectly fit into the hydrophobic binding pocket of the studied 5-HT2A-Rs and D2-Rs and form important
H-bond interactions in the active sites. With this in mind, the authors’ aim was to explore different fragments
from available databases (General Fragment Library and Enamine Essential Fragment Library) by their similarity
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Hydrophobic region B
– presence of HBA and HBD groups

Hydrophobic region A
– presence of HBA group

Figure 7. The general strategies employed for rational design of novel dual 5-HT2A/D2 receptor antagonists with
low affinity toward the H1 receptor, obtained after overall in silico analysis.
HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor.

to the selected templates. The 14 fragment hits with the highest similarity score (Glob-Sum) values were chosen for
replacement of hydrophobic regions A and B. The selected fragments along with the Glob-Sum values are presented
in Supplementary Table 10.

30 new molecules were designed by modification of lead compounds or by linking two fragments with ethyl
piperazine in order to retain optimal distance between them but also to establish stronger H-bond interactions with
targets of interest (Supplementary Figure 18). Furthermore, they were optimized and docked in the same manner
as the dataset molecules. Depending on similarity to the reference ligand from the MD simulation, designed
compounds were docked into each receptor (5-HT2A, D2 and H1) using the AD Vina program, and the obtained
docking scores are presented in Supplementary Table 11. Afterward, the created 3D-QSAR models of all three
receptors were used to predict their pKi values (Supplementary Table 11).

Based on the activity predictions, three structurally different compounds, A2, B3 and C3, were selected for
further molecular docking analysis. Not only were these compounds predicted to have a similar or higher affinity
for 5-HT2A-Rs and D2-Rs as lead molecules, but also they were found to exhibit significantly higher differences
between predicted pKi values for 5-HT2A/D2-Rs and off-target H1-R compared with others (Supplementary
Table 11). With this in mind, the molecular docking approach was further used to analyze the key interactions
of A2, B3 and C3 molecules in the active sites of 5-HT2A-Rs, D2-Rs and H1-Rs (Figure 8). All three ligands
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Figure 8. Representation of molecular docking results for designed compounds. A2 in complex with 5-HT2A receptor
(5-HT2A-R) (A), D2 receptor (D2-R) (B) and H1 receptor (H1-R) (C); B3 in complex with 5-HT2A-R (D), D2-R (E) and H1-R (F);
and C3 in complex with 5-HT2A-R (G), D2-R (H) and H1-R (I). The hydrogen bond interactions are depicted in green, salt
bridge in orange, and π–π and alkyl–π interactions in purple. Outlined amino acids form Van der Waals interactions.
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possess aromatic heterocyclic rings in the bottom hydrophobic cleft, which form CH–π, π–π or hydrophobic
interactions with all essential residues. Additional H-bond interactions with residues at positions 3×37 (Thr160
for 5-HT2A-R and Thr119 for D2-R), 5×43 (Ser193 for D2-R) and 5×461 (Ser197 for D2-R) were observed for
all three compounds, due to the presence of the HBA group (Figures 8A, B, D & H). However, in the active site
of H1-R, only compound B3 formed an interaction with Asn1985×461 (Figure 8F). Moreover, it was observed that
the charged tertiary nitrogen atom of the piperazine ring of the designed compounds formed the crucial interaction
with Asp3×32 (Asp155, Asp114 and Asp107 for 5-HT2A-Rs, D2-Rs and H1-Rs, respectively) (Figure 8). Since
the 3D-QSAR studies showed that the introduction of hydrophobic region B leads to an increase in 5-HT2A-R
and D2-R activity and a decrease in H1-R activity, different fragments were investigated in this position. All of
them were perfectly embedded within the hydrophobic pocket comprised of TM2, TM3, TM7 and ECL2 for
5-HT2A-R or ECL1 for D2-R (Figure 8). Moreover, the aforementioned analysis emphasized that the introduction
of HBD and HBA groups positively correlates with 5-HT2A-R and D2-R activity, compared with H1-R. As shown
in Figure 8A, D & G, all three selected compounds form H-bond interactions with Asn3637×35 of 5-HT2A-R.
Additionally, carbonyl oxygen of the 2-benzoxazolinone moiety of A2 and 2-oxoquinoline of B3 molecules interact
with Trp3677×39, while –NH of the C3 molecule forms an H-bond with Gly3597×31. Furthermore, docking into
D2-R shows that A2 and C3 ligands make contact with polar residue Ser4097×35, which is at the same position
as Asn363 of 5-HT2A-R (Figure 8B & H). In contrast, the 3D-QSAR study suggested that the presence of these
groups has a negative impact on H1-R activity. A docking study revealed that only the A2 compound forms an
H-bond interaction with Cys18045×50 from ECL2 of H1-R. Generally, all designed compounds possess higher
5-HT2A-R than D2-R activity, which may be beneficial for optimal efficacy and lower propensity to cause side
effects such as EPSs. It is worthy to note that these ligands were also predicted to have significantly lower H1-R
activity compared with ziprasidone and clozapine (Supplementary Table 11).

The leverage approach was employed to examine if the designed compounds fall within the defined applicability
domain for each receptor. As presented in Supplementary Figures 19–21, the authors conclude that there are no
outliers and predicted pKi values may be considered reliable.

In silico prediction of ADMET properties for designed compounds
After activity predictions, different physico-chemical parameters, synthetic difficulty scores (Supplementary Table
12) and pharmacokinetic properties (Supplementary Table 13) were calculated for in silico evaluation of novel
designed antagonists by using ADMET Predictor software. The lipophilicity features were assessed by MlogP and
LogP values, indicating that all compounds, except C16, possess an optimal permeability and solubility profile
and are likely to have good oral bioavailability. Lipinski’s ‘rule of 5’ is widely used for the evaluation of drug-like
properties. The obtained results revealed that only two compounds, C1 and C16, violate one of the Lipinski
parameters, while all the compounds satisfy the TPSA <140 Å2 criterion [94]. Moreover, slightly lower penetration
through the blood–brain barrier (BBB) was predicted for the compounds from group A, while group B compounds
(especially B3) were assessed to have a higher percentage of unbound drug in plasma compared with the other
designed compounds as well as lead molecules. The cytochrome P450 enzymes (CYPs) play an important role in
drug metabolism. All compounds were found to be substrates of CYP2D6 and CYP3A4 enzymes and most of
them might also be inhibitors. Furthermore, all examined compounds were identified as P-gp substrates. In silico
toxicity prediction showed that some compounds possess the potential for hERG inhibition and therefore might
have an adverse cardiac effect. Compared with clozapine, the designed antagonists possess a lower toxicity risk. The
results obtained through this ADMET study may be valuable in further optimization of the compounds regarding
their pharmacological effect. Besides, the synthetic difficulty of the designed compounds was evaluated using the
SynthDiff score from the ADMET Predictor program (Supplementary Table 12). The score is modeled on the
synthetic accessibility score (SA score) and ranges from 0 (simple molecules) to 10 (most difficult for synthesis).
The calculation is based on the molecular complexity and fragment contributions [95]. The obtained results revealed
that the designed compounds from group A (especially A2) possess the lowest SynthDiff score, while molecules
from group B were predicted to have the highest score compared with others. However, it should be taken into
account that commercially available fragments were used in the process of rational design of new antagonists, which
can significantly facilitate their synthesis.

Based on the obtained findings from 3D-QSAR, molecular docking and ADMET studies, three designed
compounds, A2, B3 and C3, were selected as the most promising candidates for further examination, synthesis and
in vitro testing (Table 5). Following the created computational protocol for rational design, they were predicted to
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Table 5. Activity prediction of the most promising candidates for further optimization (A2, B3 and C3) by created
3D-quantitative structure–activity relationship models and experimentally determined activities of lead molecules.

pKi5-HT2A pKiD2 pKiH1

A2 9.71 8.82 6.18

B3 9.85 8.06 6.89

C3 10.81 8.16 6.49

ChEMBL90882 8.52 8.60 /

Clozapine 8.04 6.66 8.96

Ziprasidone 10.10 8.30 7.33

Lumateperone 9.27 7.50 /

pKi: Negative logarithm of inhibition constant (-logKi).

have a desired activity and selectivity profile toward 5-HT2A-Rs, D2-Rs and H1-Rs as well as favorable drug-like
properties compared with lead molecules.

Conclusion
Despite the broad spectrum of currently available drugs for multi-factorial CNS diseases, there is an ongoing
need for novel, more effective and safer therapeutics. The current study presented a computational strategy for
designing multi-target ligands that simultaneously modulate the activity of 5-HT2A-R and D2-R, with low affinity
for H1-R. To generate bioactive conformations of ligands for 3D-QSAR modeling, the authors applied MD and
molecular docking approaches to these studied targets of interest. Three series of structurally different antagonists
were used in 3D-QSAR model building in order to define crucial molecular features, important for high biological
activity and selectivity. Based on the findings obtained through the integration of SBDD and LBDD methods,
novel 5-HT2A/D2-R dual antagonists with enhanced activity and a desirable selectivity profile against H1-R were
designed. Accordingly, available fragment libraries were screened in order to identify starting points for the design
of high-affinity 5-HT2A/D2-R antagonists. Afterward, all designed antagonists, along with lead molecules, were
used for in silico ADMET profiling, in order to analyze and compare their pharmacokinetic properties, as well as
synthetic tractability. The most promising candidates, with improved drug-like properties, were selected for further
optimization and development of multi-potent drugs, which will be the subject of a future work. All together, the
obtained findings may open a new avenue of multi-target drug development and may lead to novel discoveries and
greater understanding of dual 5-HT2A/D2-R antagonists in the treatment of several neuropsychiatric disorders.

Future perspective
Created and statistically validated 3D-QSAR models for 5-HT2A-R, D2-R and H1-R present a significant predictive
tool, especially in the early stages of the drug discovery process. They could be employed for accurate activity pre-
diction of newly designed analogues that fall within defined applicability domains. Comprehensive pharmacophore
analysis may lead to further optimization of molecules with dual antagonistic activity on 5-HT2A/D2-Rs and
lower affinity toward H1-R, which could be valuable in the development of new therapeutics for the treatment of
various neurological diseases and mental disorders. Moreover, selected designed compounds, A2, B3 and C3, will
be subjected to further examination, synthesis and in vitro testing.
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Summary points

• Molecular dynamics simulations, molecular docking and 3D-quantitative structure–activity relationship (3D-QSAR)
methods were integrated to perform an extensive pharmacophore analysis of dual 5-HT2A/D2 receptor
(5-HT2A/D2-R) antagonists with lower affinity toward H1 receptor (H1-R).

• The predominant bioactive conformations generated by structure-based drug design methods were used for the
calculation of grid independent descriptors and 3D-QSAR model building in order to identify molecular
determinants that influence the antagonistic activity of the studied compounds at 5-HT2A-Rs, D2-Rs and H1-Rs.

• New dual antagonists with improved activity and selectivity profiles were designed by employing the
fragment-based drug design approach. The created 3D-QSAR models were utilized for activity prediction, while
molecular docking was used to reveal key interactions of the designed compounds in the binding sites of
5-HT2A-Rs, D2-Rs and H1-Rs.

• In silico absorption, distribution, metabolism, excretion and toxicity analysis was performed to describe the
drug-like properties of new dual antagonists.
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