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Abstract: Power quality disturbances (PQD) have a negative impact on power quality-sensitive
equipment, often resulting in great financial losses. To prevent these losses, besides detecting a
PQD on time, it is important to classify it, so that appropriate recovery procedures are employed.
The majority of research employs machine learning model PQD classifiers on manually extracted
features from simulated or real-world signals. This paper presents an end-to-end approach that
circumvents the manual feature extraction and uses signals generated from mathematical voltage sag
type formulas. We developed a configurable voltage sag generator that was used to form training and
validation datasets. Based on the synthetic three-phase voltage signals, we trained several end-to-end
LSTM classifiers that classify voltage sags according to ABC classification. The best-performing
model achieved an accuracy of over 90% in the real-world dataset.

Keywords: power quality; classification; neural networks; voltage sag; dataset

1. Introduction

With the latest trend of an increasing number of sophisticated equipment connected to
the power grid, which is more susceptible to voltage disturbances while also contributing
to them, power quality has gained significance. To address this problem, the effective
characterization of power quality disturbances (PQDs) is crucial, i.e., quick and accurate
detection and classification. Various methods have been proposed in the literature [1–10].
They enable fast and accurate PQD detection and classification based on mathematical PQD
models or different signal-processing tools for feature and pattern recognition [2,7]. For au-
tomated classification, the application of artificial intelligence in a form of different machine
learning algorithms, more specifically deep learning, proved as a good solution [3,8,9].
However, there are many PQD indices with various parameters, they have different causes,
and their features and feature extraction methods are not standardized, so an application
of the deep learning tools may be complex and time demanding [4–6]. Better performance
may be achieved with methods specialized for a single disturbance. In that case, specific
parameters of such a disturbance may be detected and more precise classification may
be achieved.

Among the various types of disturbances, voltage sags often have severe negative
effects. They are the most common cause of equipment malfunction and incur high time
and revenue losses for businesses. Their detection, classification, and characterization
are of special interest for variable-speed electric motor drive operations, power system
stability, and the secure interconnection of distributed generation based on renewable
energy sources, as well as for various devices for PQDs mitigation [1,11].
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The conventional approach for their detection is to measure the RMS values of the
signal over time and simply check whether the RMS value falls below a standardized
threshold. However, there are several more advanced methods, which differ in speed,
accuracy, and complexity [12,13]. They require some form of signal processing and may
be classified into parametric, non-parametric, or hybrid methods, while the application of
artificial intelligence is also possible [12]. The main parameters are the speed and accuracy
of the detection. The comparison presented in [13] shows that a method based on harmonic
footprint proposed in [14] has superior performances, so far.

Voltage sags can be classified into several types: (a) by using three-phase voltage
phasors (there are seven types, A–G classification) [1]; (b) by applying the method of
“voltage sags magnitude equality” (there are three types: Types I, II, and III) [15,16], and by
the shape of the voltage sag RMS value (there are three types, rectangular, nonrectangular
(triangular), or step change (multi-stage)) [17]. The most convenient method is the first
one (A–G classification), and it will be used in this paper. For differentiation between
specific types of voltage sags, there are various approaches, but all of them require specific
feature extraction, optimization, and processing [8,10,17]. The main feature of voltage sag
is the voltage RMS value, but it can be also recognized by using a space vector ellipse in a
complex plane [9] or by harmonic footprint [14]. In this paper, we will use the RMS feature.
However, the RMS feature is not always sufficient. In some cases, it is not straightforward,
or it is not possible to differentiate between the types of voltage sags because of the complex
interactions in the power grids. Therefore, the application of some artificial intelligence
tools may be of interest.

Machine learning (ML) methods have the potential to bring additional generalization
power to automatic classification. The feature extraction can be done manually or within
an end-to-end approach. There are advantages and drawbacks to both approaches. When a
manual feature extraction is done properly, ML models can be trained better, the model is
less complex, and, as a result, the model calculation time is shorter. The biggest drawback
is the process of manual feature engineering. To achieve the best results all the necessary
features must be selected, and all of the unnecessary features must be removed to achieve
the least complex and most accurate model. Additionally, when the feature extraction is
computationally demanding, it can prolong overall classification time because extraction is
done manually. With an end-to-end approach, ML methods learn the necessary features
during training. As will be shown in the Literature Review Section, such an approach
for the PQD classification has been reported in just a few papers. In this approach, it
is necessary to rely on a model’s ability to automatically infer useful features for the
classification, and there is a potential suspect in whether the model can do it correctly.
Still, end-to-end methods have been successfully applied in different fields, e.g., various
applications in acoustics such as classification and transformation of sounds [18]. In an
end-to-end approach, however, there is no feature extraction done beforehand, which is
an advantage over the previous approach. Additionally, the time needed for the whole
task can be shorter. The main drawback to this approach is the design of the model and
the process of training. With the feature extraction responsibility shifted to the model, the
complexity of the model must be high enough to enable learning of all necessary features
and the process of training must be adjusted accordingly.

Ideally, a big dataset of real-world data is available to the ML model during training.
Usually, this task is very time consuming and requires a professional in the required field
to correctly label all the data. When an appropriate real-world dataset is not available, the
usual solution is to augment the dataset with additional generated data or to generate the
whole dataset. For PQD datasets, the usual approach is to generate data by simulation.
Simulations output signals closer to the real-world recordings. The caveat to this approach
is the time needed for the design of the grids used in simulations and the simulations
themselves. In contrast, this paper shows the use of generalized mathematical models as a
valid option to generate a synthetic PQD dataset. This approach shows greater flexibility
in the variety of the generated signals and is faster with the ability to generate hundreds
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of thousands of signals per hour, as we did it. These signals are simplified versions of
real-world, measured data, so the networks trained on synthetic datasets in real-world
applications often do not perform as well as those trained on datasets with measured data.
However, there are advantages in training the network on a synthetic dataset including
the following:

• Deep neural network training requires a lot of PQD signals (orders of 10 s to 100 s of
thousands of instances or more) that can be generated in a few hours, contrary to, e.g.,
the signal measurement and collection from electrical grids that can last for months or
years, making synthetic datasets more accessible.

• It is easier to produce a synthetic dataset with a balanced number of instances of
different fault types than to collect the same percentage of all signal types from the
electrical grid since some fault types occur rarely.

• There is no need for a professional to do the labeling of the data since it is already
known what is being outputted during generation.

• The model trained on the synthetic dataset can be used in transfer learning [19] and
uptrained with measured signals, satisfying the need for large and realistic datasets at
the same time.

Although models trained on synthetic data do not tend to perform as well on real data
as models trained on real data, they, in contrast, can have better generalization abilities
when used on datasets with different distributions.

This paper represents a continuation of our work in [20]. In the previous study, we
built an LSTM network and trained it on synthetic signals, and it worked wonderfully but
had poor performance on real-world data. It had an accuracy of 50% or lower if real-world
signals were applied. In this paper, we expand our research on voltage sag classification
based on raw signals. We explore how improvements to the dataset and the model impact
the performance of real-world voltage measurement data. These augmentations enabled us
to train a model that achieved an accuracy of over 90% on the real-world dataset.

To create a synthetic dataset of voltage sag signals, we developed a voltage sag
generator. The generator is written in Python. It is parameterized and extensible so it
can be configured to output differently distributed datasets as well as extended with
additional fault types. An additional benefit of using the generator would be for validation
purposes and comparison of different models. To this end, the generator can be used to
generate standardized datasets for these purposes. The generator, the models, the training,
the validation code, and the best weights described in this paper are available online at:
https://bitbucket.org/sara_e21/ee2021-mdpi-vsc/ (accessed on 30 January 2022).

Four variants of the synthetic dataset and three different models were made for this
research. The dataset variants differ in respect to two augmentations that bring signals
closer to the real-world measurements. The first is the amplitude variation of non-faulty
segments and the second is the smoothing of transitions between faulty and non-faulty
segments of the signal. Models differ in complexity in respect to the number, type, and
arrangement of the layers. For all 12 possible combinations, a model instance was trained
and tested on the real-world data. Each model instance is verified on the real-world dataset.
The real-world dataset consists of real-world recordings made and labeled by professor Dr.
Math H. J. Bollen [1].

The best model achieved around 90% accuracy on the real-world dataset. The achieved
results show great promise and show that synthetic dataset can be used to successfully
train classifiers for real-world fault recordings. The end-to-end approach demonstrated that
manual feature extraction is not crucial for the classification of PQD. We can expect better-
performing end-to-end models from future works. It would be beneficial for future research
to see the standardization of training and/or verification datasets. This would make a
comparison of the proposing ML methods more straightforward. Mentioned standardized
datasets could be made with the use of the generator of synthetic signals proposed in
the paper.

https://bitbucket.org/sara_e21/ee2021-mdpi-vsc/
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The rest of the paper goes as follows. The second section gives insights into deep
learning theory closely related to the classification method presented in this paper. It is
followed by an overview of the recent literature in PQD and voltage sag classification
research in the third section. The fourth section explains in detail the methodology behind
the experiment preparation and followed protocols that led to the results. The fifth section
focuses on the acquired results and provides an analysis of the results. Finally, the last
section gives a summary of the results and proposes possible future work paths.

2. Background Theory

Deep neural networks (DNNs) [21] are a part of a broader family of deep learning
algorithms. Nowadays, DNNs are widely used due to their ability to automatically extract
multi-scale features from large amounts of data and, optionally, perform tasks like detection
or classification based on learned features. Automatic feature extraction has an advantage
over its predecessors, hand-crafted feature extraction algorithms, since no assumptions on
data patterns are required to find and learn the patterns. A DNN consists of a large number
of stacked layers. The attribute “deep” in deep neural networks is due to the number of
layers in the network, which can be very large and depend on the complexity of the data
used for learning. DNNs learn layer by layer by feeding the first, input layer with data,
while all subsequent layers except the output one learn significant features. Effectively, lay-
ers refine and pass information among themselves to obtain requested generalization from
the data. The typical structure of a DNN consists of an input layer, multiple hidden layers,
and an output layer. Some of the commonly used DNN specializations are convolutional
neural networks (CNNs), which are heavily utilized in image processing and recurrent
neural networks (RNNs) used in fields where the input data are in the form of a time series.

2.1. Recurrent Neural Networks

Recurrent neural networks (RNNs) [22] are good at processing sequence data for
predictions. That is the reason why they are widely used in tasks naturally producing
sequence data, such as natural language processing and speech recognition, where the
input data are in the form of text or audio sequences. Vanilla RNNs consist of input and
output layers and one or more hidden layers. The hidden layer contains many neurons, or
cells, as they are usually called in RNN terminology, being responsible for “memorizing”
the content the network has learned and maintaining the network’s state. The RNN is
trained by feeding it with pieces of sequential data, one chunk at a time to update the
network’s state. However, what differs RNN from a standard feed-forward neural network
is that calculation of the network state in time step t depends not only on the input data
for that time step, but also on the network state in time step t−1. This mechanism enables
RNNs to incorporate past knowledge from all previous time steps when predicting the
output for time moment t. Figure 1. shows the RNNs computational graph across the time
for the same RNN.

RNNs have multiple advantages over standard feed-forward networks such as the
ability to handle sequences of variable length and constant model size for a variable input
size. However, vanilla RNNs also have a significant limitation—they have short-term
memory, meaning that they cannot properly learn long-term dependencies in the input
sequence. This limitation is introduced by the algorithm used to update RNNs weights in
the training process.

2.2. Long Short-Term Memory Networks

Long short-term memory (LSTM) [23] neural network architecture is a variation of
RNN introduced to mitigate short-term memory issues of vanilla RNNs by advanced mod-
ifications in RNN cell design. Similar to RNN cells, LSTM cells are capable of memorizing
the state, but unlike RNN cells, that is not done unconditionally. LSTM cells contain gates
that are used to control information flow through the cell in the training process, thus
limiting cell state perturbations that might negatively affect learning. The intuition behind
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the LSTM gate concept is to enable the cell to forget irrelevant history and use only new
and important data to update its state and generate the output. LSTMs are appropriate
to use when it is expected that underlying data have long-term dependencies. Otherwise,
vanilla RNNs can perform well enough in a shorter time, since updating the RNNs state is
less computationally intensive compared to LSTM, where more calculations are needed to
calculate the cell’s next state.
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3. Literature Review

The development of machine learning techniques has influenced the work on the
classification of PQDs in electrical grids, which is visible by an increased number of pub-
lished papers presenting classification solutions that rely on machine learning. Commonly
used machine learning techniques to classify PQ signal disturbances are artificial neural
networks (ANNs), support vector machines (SVM), decision trees, logistic regression (LR),
and extreme learning machine (ELM) [10,24].

All the above-mentioned methods involve a process known as ‘feature engineer-
ing’ to extract characteristics significant for PQ classification from a time-series electrical
signal. Usually that means applying a hand-crafted transformation to extract different,
spatio-temporal, stationary, non-stationary, or other signal characteristics. Some of the
most used feature extraction methods in literature are Wavelet transform (WT) Kalman
filter, S-transform, Fourier transform, Gabor–Wigner transform, Hilbert–Huang transform,
Harmonic footprint, and statistics-based methods [10,12,14,24].

However, feature engineering has certain drawbacks: it requires an expert to find
the optimal choice for the feature extraction algorithm, and it adds computational cost to
the classification pipeline; thus, it limits the method’s applicability for real-time purposes.
Sometimes, even with the best effort, it is not possible to design a feature extraction function
that will preserve all information that might benefit classification and simultaneously
reduce signal complexity. That motivated later research on PQ classification to converge
towards deep learning, where significant features are learned automatically by deep neural
networks [9]. In some cases, the deep neural networks are used in the feature engineering
process to automatically find significant features that are further used to train a simpler
classification method [25] or, more often, both extract significant features and classify
PQ signal disturbances [26–29]. In [25], a CNN is used to automatically extract features
from input signals that are used to train distance-weighted k-nearest neighbors. There
are also approaches based on two-dimensional (2D) CNNs that make use of the plotted
disturbance signals [26,29,30], which practically classify waveform images instead of one-
dimensional time series. This can be seen in [30], where PQ voltage disturbances are
transformed using continuous wavelet transform (CWT), CWT coefficients are plotted,
and those plots are used as inputs to train a CNN. Work in [26] transforms the raw signal



Energies 2022, 15, 2898 6 of 22

to root mean square (RMS) voltage waveform and uses waveform plots for classification.
While this approach is suitable for post-fault signal classification, it can be problematic in
time-critical applications, like real-time fault detection or classification, where the signal
to image conversion adds up on classification time. While early work on deep learning
used mainly transformed signals as an input to the network, using raw time series to
classify disturbances is more common in recent work [22,23,27]. By operating on a raw
waveform in the time domain, the network can learn low-level patterns encoded directly
into the signal, without any assumptions on the underlying patterns introduced by feature
engineering or input signal transformations. Training networks on raw signals have so
far demonstrated at least comparable or even superior classification results compared to
previously proposed machine learning methods [31,32]. Similar performance trends have
also been demonstrated in other fields where DNNs are trained on raw wavelets such as
automatic speech recognition [18,33], acoustic scene classification [34,35], and motor fault
detection [36,37].

Since deep learning methods require large datasets for training, there are two main-
stream directions in literature when training these methods for PQ voltage disturbance
classification: to train the method on a dataset of measured signals from an electrical
grid [26,30,38] or to synthesize signals based on mathematical models [27,28,32]. The first
approach is widely adopted in literature when it comes to the training of traditional ma-
chine learning methods, such as SVM classifiers or shallow neural networks, since they
can be trained with smaller amounts of data. Training the method on measured signals
is a better option, when possible since the performance of a trained model is a better
approximation of the model’s behavior in industry applications when compared to the
models trained on synthetic data. There are two main concerns in training the network
on real-world datasets that emerged with the development of deep learning models: ex-
isting publicly available datasets are too small to be used in deep learning training and
collecting a huge number of measured signals is an expensive and time-consuming process
aggravated by class imbalance problems since some disturbances appear more often in
electrical grids than others. While dataset collection lags in time compared to deep learning
model development speed, it is accepted in the literature to train deep neural networks
on datasets with synthetically generated signals and, if possible, test the model on signals
measured in electrical grids [27,32,39].

Voltage Sag Classification

Voltage sag is one of the classes commonly predicted by PQD classification. It is of
interest to classify voltage sags in finer subcategories, as well as to identify voltage sag
sources to timely and properly react to the sag and minimize the probability of damage in
the grid. The majority of current research centers on the latter, with traditional pipelines
utilizing feature engineering [40,41] in combination with some shallow machine learning
methods like SVMs [42–44] and ANNs [40,44] or discrete algorithms [45]. To the best of the
authors’ knowledge, just a few papers are demonstrating the application of deep learning
models in voltage sag classification for time domain signals. A work from [46] uses the
LSTM network to train the model on RMS sequences obtained by transformation of raw
signals. The proposed LSTM network is trained and tested on measured data labeled
according to the ACD classification scheme and achieves a classification accuracy of 93.40%.
Subsequent work in [47] improves on work in [46] by increasing classification accuracy
on measured test data to 97.72%. The method proposed in [47] transforms input signals
from a time domain to a 2D space-phasor model (SPM) and employs a CNN to perform
classification into one of the classes of the ACD classification scheme. We find that methods
from [46,47] have multiple differences compared to the method proposed in this paper.
Firstly, they classify signals according to the ACD classification scheme, which is derived
from ABC classification by aggregating seven classes from ABC classification into three
ACD classification schemes. Secondly, although it is desirable to use real-world data in
network training, a shortcoming of using private datasets, as it is done in [46,47], is a lack
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of experiment reproducibility. In this work, using synthetic signals are made publicly
available and the method achieves accuracy close to that reported in [46] on a more detailed
classification scheme. The third meaningful difference to the [46,47] is that we use raw
signals as an input to classification algorithm contrary to the transformed signals such as
RMS in [46] and SPM in [47]. Transforming the input signal to emphasize certain properties
to facilitate classification may lead to suboptimal results as is suggested in [48]. Since
signal transformations are targeted to emphasize certain signal properties, it is natural that
other, possibly significant properties that are present in a raw signals get omitted from a
transformed signal. Simplified signals are a requirement when it comes to shallow machine
learning models training since these models have a limited ability to learn complex patterns
due to their fairly simple design. On the other hand, by adjusting the depth of the DL
model, such as the one proposed in this paper, one can increase the model’s ability to
learn complex patterns and avoid information loss caused by signal simplification. Work
in [48] recognizes the shortcomings of training a DL model on transformed signals and
proposes improved, bidirectional LSTM (Bi-LSTM) with an attention mechanism to classify
voltage sag causes with high accuracy for each predicted class. Although the proposed
work addresses voltage sag source instead of voltage sag classification, it is significant as a
demonstration of successful LSTM application in raw waveform-based classification for
the task closely related to the one addressed in this paper. Inspired by the growing success
of DL methods in raw signal-based classification in voltage sag cause and PQ disturbance
classification, this paper demonstrates usage of the LSTM neural network for voltage sag
subtype classification according to standard ABC categorization [1]. To the best of the
authors’ knowledge, this is the first work applying DL models on raw, three-phase, voltage
series time data to predict a voltage sag subtype in accordance with the ABC scheme.

4. Methodology

As a continuation of the previous research, to increase the accuracy and applicability
of the model, the synthetic dataset was augmented resulting in four dataset variants, and
three improved models that were trained on each of them and tested on a real-world
dataset. In the case of datasets, two upgrades were introduced to make the dataset a step
closer to the real-world data. Three models were designed to test how the changes to the
depth and complexity of the model affect the results. All the data and model combinations
were trained and tested on a set of real signals. The overview of the experimental setup
is shown in Figure 2. There are two stages. The first stage is the training of the models,
and the second stage is the testing of the trained models on the real-world data. In the first
stage, one model per each synthetic dataset and model combination are trained, as depicted
by the left half of Figure 2. The second stage is depicted by the right half of Figure 2.
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In the following subsections, each stage will be described in more detail.

4.1. Synthetic Signal Generation

Synthetic signal generation consists of generating the signals themselves with their
corresponding labels. The synthetic signals are then used as an input for the models and
the labels are used as expected output. The place of the signal generation in the experiment
is shown in Figure 2 as a computer icon.

Three-phase voltage signals by their nature are three sinusoids with different start-
ing phase angles [1]. Because of this, the generation of signals is mainly based on the
manipulation of sinusoids. Many disturbances can be simulated with simple amplitude
scaling and phase angle shifting. For this research, the generator was designed to output
non-faulty signals and all types of voltage sags proposed in the ABC classification. The
classification includes seven basic voltage sag types named, respectively, with letters A to G.
Each generated signal is labeled with one of seven types, or with a special NF label, which
stands for No-Fault (NF) and is used for signals without disturbances or with disturbances,
where the RMS of all phases is above 90% of the nominal voltage. In this research, we
focused only on simple fault signals with single class faults. From the ground up, the
generator was built with extensibility in mind so that more fault types can be added later.

The generator is also parameterized to enable greater flexibility of the process. The
parameters can be divided into two main groups. Signal parameters, which pertain to the
characteristics of the signals and are irrelevant to the fault types, and fault parameters,
which induce the fault deformations in the non-faulty signal.

A comprehensive list of parameters used for signal generation is shown in Table 1.
Out of these parameters, signal duration, fault start time, and fault duration are temporal
parameters. Signal duration controls the time length of a single sample, fault starting time
controls the moment at which the fault will occur in the signal, and fault duration controls
the duration of the fault. The main signal characteristics that differ between grids are
nominal voltage and signal frequency. Nominal rms determine the expected voltage to be
delivered in the grid. Signal frequency allows for the generator to output signals of any
frequency to accommodate the variations from real-world grids such as the 50 and 60 Hz
signals. The sampling frequency is a parameter that accommodates variations in resolutions
of measuring devices used for voltage measurements from grids. To take into consideration
the possibilities of signal amplitudes varying and still not being faulty and fault events
happening during different phases of a signal cycle, no-fault amplitude delta and phase angle
delta parameters change the elementary parameters of sinusoidal signal generation, namely
the amplitude and phase angle. Non-fault amplitude delta scales nominal voltage to the (90%,
110%), while phase angle delta is phase angle added to the phase angle. The no. of smoothing
time points parameter is the number of time points, i.e., number of samples, which are
used in smoothing between a normal signal and a fault. Lastly, noise percentage controls the
percentage of the white noise compared to the nominal value of the signal. Label controls
what kind of a signal is being generated. In the case of the NF label, a signal without faults
is generated. In all other cases, a type of voltage sag is being generated and is dependent
on additional parameters.

There are two fault-specific parameters: fault severity and signal rotation. These two
parameters are specific to voltage sag generation. Fault severity controls the intensity of the
deformations of amplitudes and phase angles of each of the phases individually. With fault
severity being equal to 1-V (Appendix A; Formulas (A1)–(A7)), the multiplicative amplitude
delta and additive phase angle delta are calculated. After applying V as 1—the fault severity
in the adequate set of formulas—newly calculated phasors represent phasors during the
faulty state. Default scaling of the amplitudes of new phasors is already in (0, 1) the interval,
so the calculated amplitudes represent the multiplicative amplitude delta. On the contrary,
the phase angle delta is calculated as a difference between the faulty and non-faulty phasor.
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Table 1. The list of generator parameters with their meanings and acceptable values.

Parameter Name Meaning Acceptable Values

signal duration Time duration of the sample A real number higher than 0

fault start time The moment at which the fault occurs in the sample A real number from [0, signal_duration]

fault duration Time duration from the fault start time to the moment
of recovery

A real number from [0,
signal_duration-fault_start_time]

nominal rms Voltage value in the grid set by the regulation laws A real number higher than 0

signal frequency No. of sinusoids per second A real number higher than 0

sampling frequency No. of sampling points per second A real number higher than 0

no-fault amplitude delta Non-faulty scaling amplitude values, i.e., 90% to 110% A real number from (0.9, 1.1)

phase angle delta Phase angle offset of the whole signal A real number from [0, 2π}

no. of smoothing timepoints No. of points that smoothen the transition from
normal to faulty state and vice-versa. An integer higher than or equal to 0

fault severity The intensity of the changes during fault; equal to
1-V (Appendix A; formulas (A1)–(A7)) A real number from [0, 1]

signal rotation Changes the phasor around which the fault is based
for asymmetric faults {‘ABC’, ‘BCA’, ‘CAB’}

noise percentage White noise in percent in respect to the nominal rms A real number higher than or equal to 0

label Type of the fault to be generated {NF, A, B, C, D, E, F, G}

The adequate formula set is picked concerning the label when its value is not NF. All
voltage sag types except for type A are not symmetrical around each of the phasors and
are based around phase A. To cover cases of these faults occurring based around phases
B and C, a simple signal rotation is introduced. The comprehensive list of the voltage
sag formulas used is shown in Appendix A in Table A1. A step-by-step algorithm for
generating a signal is shown in Appendix B, Algorithm A1.

4.2. Data Preparation

Each synthetic dataset consists of two sub-datasets, one for training and one for
validation. There are four variants of the synthetic datasets made by introducing two
types of augmentations to the data. The instantaneousness of the change from normal to
faulty state is unnatural, so the first augmentation smooths this transition. The second
augmentation is varying the base voltage amplitude of the normal signal within the bounds
of 90% to 110% of the nominal. This simulates the imperfections that fall short of errors
in the normal operation of an electrical grid. The dataset without any modifications we
termed ‘sterile.’ The set with just smoothing we labeled ‘smooth’, and the set with just
varied base voltage amplitude we labeled ‘varied_normal.’ The set with both modifications
applied was labeled ‘varied_smooth.’ The effects of the upgrades are illustrated in Figure 3.
The parameters used for the generation of the synthetic datasets are shown in Appendix C,
Table A2.

The shares between classes in datasets are shown in Table 2. For most of the classes,
the number of classes among the data is identical. Only NF and A classes do not have a
proportional share of datapoints because signal rotation is not present in classes NF and A.
The reason for the higher share of NF class compared to class A is the labeling of faulty
signals as not faulty when the RMS in any of the phases does not drop below the 90%
nominal RMS value. The sizes of the datasets are shown in Table 3. Figure 4 shows an
example from each of the classes from the datasets with voltage sag types shown with a
0.66 (66%) severity each.
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Figure 3. An example of augmentations introduced with smoothing and varying the amplitudes of
normal segments.

Table 2. Shares of classes in the datasets. NF and A classes are lesser due to the lack of signal rotation.
The higher share of NF class to A is a result of faulty signals being labeled as NF when the RMS is
higher than 90% of the nominal RMS value.

None A B C D E F G

~10% ~4% ~14% ~14% ~14% ~14% ~14% ~14%

Table 3. The number of instances per each set in the training and validation datasets. The ‘varied_’
datasets have higher numbers because of additional variations to normal segments.

Subsets Sterile, Smooth Varied_Normal, Varied_Smooth

training 311,520 1,557,728
validation 166,784 833,984

The final step is normalizing the data based on the nominal RMS value. The normal-
ization is designed in such a way that if the signal is in the range from 0% to 100% of its
nominal voltage value, then the resulting normalization interval is [0, 1]. The formula for
this would be as follows:

Vnew =
Vold

2·Vnominal
+ 0.5 (1)

That means if the nominal voltage value for the signal is 240 V, then a signal with
a range of [−264 V, 264 V] (110% of the nominal value) is normalized to the interval
[−0.05, 1.05].
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Each dataset instance consists of two parts. The first part is the generated signal. It is
an array of 410 timepoints for each of the three phases. The second part is the label. It is a
one-hot vector where the class is represented by the placement inside of the vector, and
the label itself is one for the one class that is present in the data and zeros in all the other
places. The label vector contains eight elements because there are seven different voltage
sag classes and one class that represents that, while there may be a voltage sag, it is not
severe enough to count it as a fault according to prevailing standards, i.e., the RMS value of
all three phases never drops below the 90% nominal RMS. The main reason for the output
vector being a one-hot vector is because this work focuses on single voltage sag type faults.
We labeled the phases ‘A, B, and C’ in a counterclockwise direction.

4.3. Model Training

In the case of models, the original LSTM model from [20] was improved with batch
normalization layers, so now it has the structure as shown in Figure 5a. In Figure 5,
each block represents one layer or a stack of multiple layers, in which case the layers are
separated with “>” character symbolizing the order of layers. The layers are presented
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top-to-bottom meaning that input data are fed to the topmost layer, whilst the bottommost
layer produces the class/label. The width of the blocks depicts the change in volume of
the feature space. Figure 5b presents the second model. Differences to the first model
are colored blue. This upgrade was introduced by adding more convolutional layers at
the beginning. The convolutional layers are computationally less demanding than the
LSTM layers, so they are added to do the low-level feature extraction before feeding the
feature data to the LSTM layers. The third model was designed with a few more upgrades
so its architecture is significantly more complex than the previous models. This model’s
architecture is shown in Figure 5c.
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Figure 5. Diagrams of the three model variants used in the research. (a) Initial model. (b) Upgraded
initial model with changes colored blue. (c) Most complex model. The purple color shows improve-
ments to the parts of (a,b) models with additional layers. The green color is an addition to a new type
of layer.

The purple model accents the changes to the parts of the first and second models’
architectures by stacking additional layers to the existing ones. The idea was to design
a few stages of feature calculation. There are four convolutional layers at the beginning
of each stage calculating the lower-level features. Following are two LSTM layers that
calculate the temporally coupled features. After the batch normalization layers, the average
pooling layers, colored green, are introduced to force the model to extract and map the
significant features to a smaller feature space, which is then used as an input to the next
stage. The ending stage consists of fully connected layers.

Listed three models are used in place of the “LSTM model” in Figure 2, where for each
model, one trained model is produced per variant of synthetic dataset during the training
stage, and later each trained model is tested on real-world data during the testing stage,
counting 12 variants in total.
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All the models have the same input and output shapes. Input shape for each model is
a tuple (batch_size, 410, 3) and the output shape is (batch_size, 8). The models were devel-
oped using Python 3.9 with Conda environment, and the TensorFlow (2.4.1) framework.
The hardware used for the experiment is a workstation with an AMD Ryzen 7 1700 CPU,
32 GB of RAM, and a GeForce GTX Titan X GPU. The training of the models was done using
Adam [49] as an optimization algorithm with a learning rate of 1e-4. The loss function used
is categorical cross-entropy. The training lasted for 10 epochs with a batch size of 32. The
training parameters not listed are left with their default implementation values.

4.4. Voltage Sag Classification and Data Analysis

To test how LSTM models trained on synthetic data perform on real-world data, we
formed a dataset of real-world voltage measurements. The trained models are designed and
trained for the classification of single voltage sag type data, which are the constituents of
the compiled real-world dataset. The real-world dataset consists of a total of 47 real-world
voltage measurements. Table 4 shows the distribution of measurements per class of the
real-world dataset.

Table 4. The first row shows the total number of instances per class. The second row shows the share
of the class in the dataset.

NF A B C D E F G

10 10 2 18 3 2 2 0

21.27% 21.27% 4.26% 38.30% 6.38% 4.26% 4.26% 0%

All the signals present in the real-world dataset have some form of voltage sag present
in the signal. The NF-labeled instances are signals for which the RMS does not drop below
90% of the nominal value at any point in any of the phases. As can be seen from the table,
signals for classes B, E, F, and G were not present in sufficient numbers to make any sort of
determination of accuracy and were therefore elided from the final tally of results, with the
inclusion limit being at least 5%.

Before the data are used in validation, there are four preprocessing steps done to
classify the data. The first one is fixing the orientation of ABC phases to match the coun-
terclockwise direction. The second one is resampling the signals to match the frequency
at which the synthetic data were generated. After this step, data normalization was done
using the recorded nominal voltage values of each of the signals. Finally, considering that,
in the training data the signals were trained with signals that start with 0.04 s of the normal
state, each of the signals was sampled for 410 time points in a sliding window manner
20 times, capturing the starting moment of the fault in the vicinity of the 0.04 s mark. These
steps are shown in Appendix B, Algorithm A2.

This network is foremost designed to be used as a classification step after the successful
detection of the anomaly in advance. Without the loss of generality, it can be assumed that
the detection step will detect the approximate moment of the beginning of the anomaly
and that the recorded window will be long enough to extract 410 time point samples with
the anomaly beginning approximately 0.4 s from the start of the sample. While testing
the models, we measured MCC and three different versions of accuracy. Accuracy over
instances, accuracy over windows of a signal with 50%+ correctness, and accuracy over the
whole window of a signal. Accuracy of the instances is the number of correctly classified
samples divided by the total number of samples. All of the signals were sampled 20 times
using the sliding window technique, so there are 20 samples per signal. Window accuracies
are the numbers of correctly classified signals divided by the number of signals where in
the first case the correctly classified window has at least 11 correctly classified samples,
and in the case of the second version, all 20 samples in a window must be correct. For
this paper, all combinations of models and datasets were trained and each of the models is
tested on the real-world dataset. During training after every epoch, the state of the model,
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i.e., weights, is saved. For each trained model, four to six weights were picked based on
the performance on the validation dataset, and only the weights with the best result on
real-world dataset were included in the final results.

5. Experimental Results, Analysis, and Discussion

The results for each variant of the third model, trained on each synthetic dataset
variant, are shown in Table 5.

Table 5. Results of the best-performing model on the real-world dataset without the results for B, E,
F, and G classes.

Training Dataset MCC Instance Acc Window Acc Whole Window Acc

sterile 0.8787 91.46% 92.68% 87.80%

smooth 0.8526 89.51% 90.24% 85.36%

varied_normal 0.8318 87.56% 87.80% 85.36%

varied_smooth 0.8448 88.65% 87.80% 85.36%

The best performance on the real-world dataset was exhibited by the third model
trained on the sterile dataset variant. The full results of the experiments, not shown here,
suggest that higher model complexity has the highest impact on performance improve-
ments. The variations in training datasets gave better performances for the first and second
models, but the third model did not show such trends. During an inspection of the behavior
of the models during training, it was observed that the models tend to overfit relatively
quickly. This is something that should be addressed in future work by further researching
architectures and training processes.

It was expected for the most complex model to achieve the best results. Higher model
complexity allows the model to properly learn the needed features. Since the proposed
classifier is supposed to be used after the detection step, it can be expected that instances
that would fall under the NF class would not come to the classification step in most cases.
Because of this, if the classifier finds the appropriate type of voltage sag in the signal, which
is otherwise labeled as NF, then that classification is counted as correct. In the real-world
dataset, each such instance is a type A voltage sag for which the RMS value is near 90%
of the nominal voltage value. Since the number of instances of classes B, E, F, and G are
two or less, i.e., less than 5% of the total number of samples, they were omitted from the
overall results.

Table 6 provides insight into the accuracy of the method per each class for the best-
performing model, i.e., the third model trained on the sterile version of the dataset. The
NF class has lower accuracy than the rest, but that is to be expected since deformations of
voltage sags with low severities are very slight and are hard to differentiate between in
real-world signals.

Table 6. Results per class of the best-performing model on the real-world dataset.

NF A B C D E F G

68.04% 90.29% 100% 97.77% 100% 50% 0% None

The performance of the classifier can be seen in detail in Figure 6. The y-axis in the
figure shows the true classes, as they are labeled in the dataset. The x-axis shows the labels
predicted by the classifier. Correct classification increases the number in the diagonal fields
of the confusion matrix. Because of this, the lighter color on the diagonal and the darker
color on the rest of the matrix are better. The darkest color means 0 instances of the given
combination of true and predicted classes, and the lightest color is over 350 instances.
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Classes B, E, and F have results that are difficult to give credence to because of the
extremely low number of examples, which is why they were not a part of our final tally of
model performance. G was not present in our real-world dataset at all and remains entirely
untested. For classes A, C, and D, performance is excellent with nearly 100% accuracy. The
NF class is more complex since it includes examples of both signals with no voltage sag
whatsoever and signals with a voltage sag too small to qualify as a fault. The results for this
class depend heavily on the somewhat arbitrary dividing line between what constitutes
a fault and what does not. Classifying the type correctly when the overall severity of the
fault is minute remains beyond the predictive power of our model since it is difficult to
distinguish noise from a very low-severity fault. To be able to accurately measure the
performance of the trained models a better real-world set should be assembled, which
would have instances of each of the classes with varying levels of severities of the voltage
sags and be balanced with approximately equal representation for each class.

In terms of time, Table 7 lists average times spent per epoch of training for each model
and each dataset variant. The total time spent on training in our case can be approximately
calculated as 10 times the time needed for one epoch. This means that training the most
complex model on variants with varied normal segments took roughly 1 day and 13 h.

Table 7. The time needed for each model trained on each dataset for one epoch.

Model Sterile, Smooth Varied_Normal, Varied_Smooth

1. model ~770 s ~3720 s
2. model ~1280 s ~6220 s
3. model ~1850 s ~13,400 s

The classification performance in respect to time is shown in Table 8. Times shown are
the time demands of each model per batch. There are 32 signals in one batch, so the last
column shows the estimated number of classifications each model can do per one second.
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Table 8. The time needed for classification of one batch (32 signals) and estimated number of
classifications per second.

Model Batch Classification Time Classifications per Second Est.

1. model ~77 ms 415
2. model ~128 ms 250
3. model ~210 ms 152

To put the achieved results in perspective, we selected a few of the similar solutions
that use machine learning in Table 9.

Table 9. Overview of a selection of similar solutions.

Method Classification Training Dataset Testing Dataset Feature Extraction Accuracy

2D CNN [47] ACD 7-class real real 2D polarized
eclipse images 97.72%

LSTM [46] ACD 7-class real real RMS 93.40%
Bi-LSTM [48] 7-class sag sources synthetic real no 99.07%
Proposed ABC 7-class synthetic real no 92.68%

The accuracies listed in Table 9 show that the solution proposed in this paper is
relevant in comparison. Direct comparison was not possible since none of the related works
used the ABC classification. The closest in terms of methodology is the work presented
in [48], which differs in the classification and training dataset. In [48], seven voltage sag
source classes are combinations of one-phase faults (simple and multi-stage), generators,
and transformer-induced voltage sags. The dataset used consists of simulated signals from
the MATLAB/Simulink scheme. The rest of the presented works all use some form of
feature extraction. In comparison, since in [46] only RMS is the only extracted feature, it is
not possible to do ABC classification. In that sense, feature extraction can help in achieving
higher accuracy in some cases, i.e., like in [47], but it also results in a loss of potentially
useful features. In terms of the training dataset, presented works have relatively small
datasets, which show the difficulty of compiling a big reliably labeled dataset. In this work,
data generation proved flexible and reliable and provided the ability to design a dataset
and train a deep NN model, which has great generalization ability.

Compared to the rest of the approaches, there are two main differences in the proposed
approach. The first difference is in the training dataset. Other works use real-world datasets
or datasets made from simulations of various grid configurations. Here, as can be seen
from the results, the models were able to generalize enough to be able to classify the
voltage sags in real-world signals from being trained on very simplified signals. This opens
the possibilities of making arbitrarily large datasets in a short amount of time compared
to modeling different grid configurations or measuring real-world signals, where the
frequencies of various types of faults are highly disproportional. Additionally, with the
generation of the signals, greater variations can be achieved in the dataset. The second
difference is in the end-to-end approach, where, contrary to the usual approaches, manual
feature engineering was circumvented. Additionally, this approach allows for the specific
deformations in the signal, which would not be calculated as features otherwise and would
not be present as input data, to be used for classification.

The results that the proposed model achieved are comparable to the state-of-the-art
models, particularly when it is taken into account that we used an end-to-end approach.
The state-of-the-art models achieve accuracies of 95% or more, but they do not employ an
end-to-end approach, with the key difference being mainly the classification of various
PQDs such as voltage sags, voltage swells, harmonics, notches, etc. The few researchers
that use an end-to-end approach do not go further into the classification of subtypes of
PQDs. The paper that is closest to our work classifies voltage sag causes and not types
of voltage sags. Our work further confirms the validity of presented approaches, namely,
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usage of end-to-end approach and training a model on a highly synthetic dataset for use on
real-world signals.

6. Conclusions

This paper presents an end-to-end deep LSTM classifier of voltage sags that achieves
an accuracy up to 92.68% (Table 5, sterile dataset, window accuracy) for the best model.
This result shows the potential in an end-to-end approach. In place of manual feature
extraction, the end-to-end approach shows that feature extraction and selection can be done
automatically. It is a general opinion that data preparations take about 80% of the time
spent on the research and that the end-to-end approach improves this time significantly [50].
For an end-to-end approach to be done properly, a big amount of reliably labeled data is
needed, which is non-trivial to obtain in the case of PQ events. Results presented in this
work show that deep machine learning models have great generalization ability, and this
allowed for the use of a synthetic dataset. The voltage sag generator presented in this paper
proved to be a reliable and flexible way of attaining a big, labeled dataset for training. In
general, it is better to have real-world data; however in the light of difficulties in obtaining
an adequate PQ events dataset, the use of simplified generated data is at least a great
starting point for deep ML models, which can later be refined using real-world datasets.

The results also show that there is room for improvement of the proposed method.
One path can be aimed towards exploring the design of standardized synthetic datasets
for training and possibly validation of ML models for the classification of PQ events. It
would also be interesting to have a dataset that would estimate the cost of misclassification.
Another path would be the exploration of improvements to the model architecture.
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Appendix A

Formulas used to generate datasets used in this paper are presented in Table A1. In
these formulas, parameter V is equal to 1—fault severity. For more details, read Section 4.1.
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Table A1. List of phasor formulas for each phase per voltage sag type.

Voltage Sag Type Phasor Formulas

A

Va = V
Vb = V

(
−1
2 −

√
3

2 j
)

Vc = V
(
−1
2 +

√
3

2 j
) (A1)

B

Va = V
Vb = −1

2 −
√

3
2 j

Vc =
−1
2 +

√
3

2 j
(A2)

C

Va = 1
Vb = −1

2 −
√

3
2 jV

Vc =
−1
2 +

√
3

2 jV
(A3)

D

Va = V
Vb = V −1

2 −
√

3
2 j

Vc = V −1
2 +

√
3

2 j
(A4)

E

Va = 1
Vb = V

(
−1
2 −

√
3

2 j
)

Vc = V
(
−1
2 +

√
3

2 j
) (A5)

F

Va = V
Vb = −

√
3

3 j + V
(
−1
2 −

√
3

6 j
)

Vc =
√

3
3 j + V

(
−1
2 +

√
3

6 j
) (A6)

G

Va = 2
3 + 1

3 V
Vb = −1

3 + V
(
−1
6 −

√
3

2 j
)

Vc =
−1
3 + V

(
−1
6 +

√
3

2 j
) (A7)

Appendix B

The process of generating one signal is shown in Algorithm A1. The first step of
the generation of one three-phase voltage signal is a calculation of a set of time points
based on the duration of the signal and sampling frequency. The next step is to separate
this set into normal and faulty segments for signals that are faulty based on the faults’
starting and ending time points. With the time points set segmented properly, the signal of
the normal segments can be already generated concerning signal frequency, RMS of the
nominal voltage value, non-fault amplitude, and phase angles. If there is no fault in the
signal, there will be no faulty segments and the algorithm ends here. In the case of the
generation of a faulty signal, the next step would be the acquisition of the function that is
used for the calculation of amplitude and phase deltas for that fault. With this function,
they are calculated based on the fault’s severity by inputting it into the adequate formula
(as listed in Appendix A; formulas (A1)–(A7)) as V = 1—fault_severity.

The faulty signal is generated the same way as the no-faulty one and is then perturbed
using the computed amplitude and phase deltas. If smoothing is enabled, the number
of points specified by no. of smoothing time points is replaced in the faulty signal segment,
where it borders a no-faulty segment. They are replaced by points computed to blend the
faulty and no-faulty segments smoothly. Before the final step, if there is signal rotation
to be applied and the voltage sag type is not symmetrical around all three phasors, then
the signals are rotated. Finally, the last step is to concatenate generated normal and faulty
segments back into one signal.
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Algorithm A1 Step-by-step process of generating one synthetic signal.

Generate one three-phase signal:
Generate time points(signal_duration, sampling_frequency)
Slice time time points into groups for normal and faulty state(fault_start_time, fault_duration)
Generate normal state segments(nominal_rms, signal_frequency, non_fault_amplitude_delta,

phase_angle_delta, noise_percentage)
IF label is not NF THEN

For voltage sag class acquire function for calculating amplitude and phase deltas based on
severity(label)->function

Calculate amplitude and phase deltas(function)->fault_amp_delta, fault_ang_delta
Generate faulty state segment applying calculated deltas(nominal_rms, signal_frequency,

non_fault_amplitude_delta, phase_angle_delta, noise_percentage, fault_start_time, fault_duration,
signal_rotation, fault_amp_delta, fault_ang_delta)

IF no_of_smoothing_time points > 0 THEN
Cut out designated no. of points from the start of the faulty

segment(no_of_smoothing_timepoints)
IF normal segment follows the faulty segment THEN

Cut out designated no. of points from the end of the faulty
segment(no_of_smoothing_timepoints)

END IF
Interpolate the missing values from the surrounding points;

END IF
IF signal rotation is in {‘BCA’, ‘CAB’} and label is not A THEN

Rotate the signals(signal rotation)
END IF
Concatenate normal and faulty states into one signal;

END IF

A step-by-step process of preparing a real-world measurement for verification is
described in Algorithm A2.

Algorithm A2 Step-by-step process of preparing a real-world measurement for verification.

Preparing a single real signal for verification:
IF phases are rotated in clockwise direction THEN

Switch A and B phases;
END IF
IF signal sampling is not 4096 Hz THEN

Resample the signal to 4096 Hz;
END IF

Normalize the signal using the nominal voltage value (formula 1);
IF there is a deformation in the signal measurement THEN

Find the time point of the beginning of the deformation;
Pick a sample of 0.1 s duration so that deformation starts at 0.04s;
Using sliding-window with 1 time point step pick also 9 samples before and 10 samples after the

already chosen sample;
ELSE

Choose 20 samples using the sliding window technique with 1 time point step from anywhere in the
signal;

END IF

Appendix C

A detailed list of values used during the generation of training and validation datasets
compiled are described in Table A2.
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Table A2. List of all values used during generation for each of the sets, subsets, and parameters.

Parameter Subset Sterile Smooth Varied_Normal Varied_Smooth

phase angle delta training 256 values chosen uniformly from [0, 6.25]
validation 19 values chosen uniformly from [0.5, 6]

signal duration training 0.1 s
validation 0.1 s

fault duration training {0.02, 0.04}
validation {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}

sampling frequency training 4096 Hz
validation 4096 Hz

signal frequency training 50 Hz
validation 50 Hz

fault severity training 32 values chosen uniformly from [0, 1]
validation 77 values chosen uniformly from [0.01, 0.99]

nominal rms
training 230 V

validation 230 V

fault start time training 0.04 s
validation 0.04 s

noise percentage training 0
validation 0

no-fault amplitude delta training 1 5 values chosen uniformly from [0.91, 1.09]
validation 1 5 values chosen uniformly from [0.91, 1.09]

no. of smoothing
timepoints

training 0 4 0 4
validation 0 4 0 4
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