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and Aleksandar Rikalovic 1,2,*

1 Department of Industrial Engineering and Management, University of Novi Sad, 21000 Novi Sad, Serbia;
bojana.bajic@uns.ac.rs (B.B.); moraca@uns.ac.rs (S.M.)

2 Institute for Artificial Intelligence Research and Developments of Serbia, 21000 Novi Sad, Serbia;
milos.jovicic@ivi.ac.rs

3 Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; nikola.suzic@unitn.it
4 Center for Quality, Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia;

miladin@kg.ac.rs
* Correspondence: a.rikalovic@uns.ac.rs or aleksandar.rikalovic@ivi.ac.rs

Abstract: In the last decade, researchers have focused on digital technologies within Industry 4.0.
However, it seems the Industry 4.0 hype did not fulfil industry expectations due to many imple-
mentation challenges. Today, Industry 5.0 proposes a human-centric approach to implement digital
sustainable technologies for smart quality improvement. One important aspect of digital sustain-
ability is reducing the energy consumption of digital technologies. This can be achieved through
a variety of means, such as optimizing energy efficiency, and data centres power consumption.
Complementing and extending features of Industry 4.0, this research develops a conceptual model
to promote Industry 5.0. The aim of the model is to optimize data without losing significant infor-
mation contained in big data. The model is empowered by edge computing, as the Industry 5.0
enabler, which provides timely, meaningful insights into the system, and the achievement of real-time
decision-making. In this way, we aim to optimize data storage and create conditions for further
power and processing resource rationalization. Additionally, the proposed model contributes to
Industry 5.0 from a social aspect by considering the knowledge, not only of experienced engineers,
but also of workers who work on machines. Finally, the industrial application was done through a
proof-of-concept using manufacturing data from the process industry, where the amount of data was
reduced by 99.73% without losing significant information contained in big data.

Keywords: human-cyber-physical systems (HCPS); big data analytics (BDA); industrial internet of
things (IIoT); smart quality management; digital sustainability; data optimization

1. Introduction

In the last decade, global hype has been built around creating smart, connected man-
ufacturing systems based on Industry 4.0 and emphasizing the role of cyber-physical
systems (CPS) [1,2]. In turn, the CPS environments, in which physical objects and soft-
ware are closely integrated via the Industrial Internet of Things (IIoT) [3,4], improved the
human–machine interaction but limited the socially sustainable aspect [5]. Moreover, the
relevant literature reports the managerial implementation challenges [6]. These challenges
pointed out the lack the human resources as the biggest barrier for hindering Industry 4.0
implementation. Thus, the technological transformations of Industry 4.0 did not carefully
consider humans as a central point in the manufacturing environments [7]. Therefore,
it seems that the technology-centered approach of Industry 4.0 has proved inadequate,
since the lack of a human impact in the application of Industry 4.0 has been reported [6,8].
The new Industry 5.0 concept intends to put the human aspect back into the center of the
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manufacturing processes [5,9], emphasizing the socially and digitally sustainable aspects
with the aim of developing human-cyber-physical systems (HCPS) [1,10].

Understanding this need for a focus change, the Industry 5.0 emphasizes the synergy
between humans and autonomous machines with social and environmental dimensions [7,11].
Specifically, the Industry 5.0 implies a transition to a digitally sustainable, human–centric
and resilient industry [5,9]. This transition empowers the creation of HCPS. As part of the
Industry 5.0 concept, HCPS represent a complex intelligent system that encompasses humans
(i.e., engineers [12,13], workers [11,14] and data researchers)—considering social aspects,
knowledge and experience, cyber systems, and physical objects connected via IIoT [15]—with
the aim of achieving smart quality management [16] with ‘self-aware,’ ‘self-prediction,’ and
‘self-maintenance’ capabilities [4,17]. However, a number of challenges for implementing
HCPS in industry remain [18].

More specifically, the human-cyber-physical systems require the generation of a mas-
sive amount of manufacturing data, which is called big data [19]. Big data in manufac-
turing [20] is highly distributed, structured, semi-structured, and unstructured raw data
generated by multisource sensors through intercommunication within the system and
externally related communication [21–23]. With the use of new digital technologies and
smart analytical methods, big data provides new solutions to improve manufacturing
system reliability and effectiveness [21–24]. Vast storage, power, and processing resources
are required to cope with the volume of big data, making cloud and edge computing the
main technologies of choice [25,26].

Both cloud and edge computing have advantages and disadvantages for HCPS. On the
one hand, cloud computing offers high performance in storing, processing, and analyzing
big data generated via the IIoT. Challenges to using cloud computing include high costs,
high energy consumption, security issues, and long response times [27]. On the other
hand, edge computing offers more security and real-time data processing, with lower costs
and lower energy consumption. However, edge computing solutions lack storage and
processing power [27,28] where the data optimization is required to reduce the number
of data samples. To the best of our knowledge, the relevant literature does not provide a
solution for HCPS that fulfils the criteria for efficient and sustainable big data analytics and
optimization at low costs.

The present research aims to fill this gap with the efficient optimization of big data and
further power and processing resource rationalization using edge computing technology
for resilient production. Specifically, using edge computing, the present research proposes
obtaining small data stored inside the manufacturing system and using it to implement
HCPS. Thus, we argue that by optimizing big data, it is possible to prepare a smaller data
set, containing precisely selected data samples that are value-adding for further use in
smart quality management. A smaller data set that is created in this way can be defined
as a precisely selected small data set obtained from big data via optimization without
losing significant information contained in the big data in the first place. Not losing
significant information means that the use of small data will not reduce the quality of
the system’s self-prediction capabilities since it contains only value-adding data samples.
Therefore, the present research develops a new conceptual model for edge computing
data optimization by creating small data which enable timely, meaningful insights into
manufacturing systems, and are organized in an accessible and understandable way, thus
optimizing resource efficiency and contributing to the sustainability of manufacturing
systems without reducing the quality of the system’s self-prediction capabilities. The
conceptual model—inspired by data mining methodology within the Industry 5.0 concept
emphasizing the human knowledge aspect, resilience empowered by edge computing, and
sustainability through resource optimization—consists of three main phases divided into
several steps. Finally, a proof-of-concept is done using manufacturing data from a process
industry company.

The present research is organized as follows. Section 2 provides a theoretical back-
ground of Industry 5.0, manufacturing data, and edge computing. Section 3 presents the
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research method and provides details of the conceptual model development and validation.
Section 4 presents the results of the conceptual model development as well as the proof of
concept using the manufacturing data. Finally, Section 5 discusses the results, sums up the
contributions, and derives conclusions.

2. Background
2.1. Smart Quality Management in Industry 5.0

In recent years, the focus on smart manufacturing systems has been pushing industry
toward a new variety of highly advanced technical solutions. In fact, smart manufactur-
ing systems often incorporate smart quality management [29] optimization capabilities
to reduce time and cost for improvements of the entire production efficiency using a
technology-oriented approach, such as Industry 4.0. However, Industry 5.0 proposes a new
phase of industrial development that builds on the previous phases of industrialization,
with a focus on digital sustainability and human-centred approaches [30] to technology.
On the one hand, Industry 5.0 has a strong connection to digital sustainability [31]. One
key aspect of Industry 5.0 is the integration of advanced digital technologies into man-
ufacturing processes. These technologies can be used to optimize production processes,
reduce waste and energy consumption, and improve overall efficiency. On the other hand,
the European Commission pointed out that humans are still the most important asset of
every company: they are dexterous, intelligent, flexible, and creative, and outperform most
machines or robots (European Commission 2019). In reply to this focus change, the smart
quality management in the Industry 5.0 concept was introduced emphasizing the main
role of the research and innovation sector in support of industry in its long-term service to
humanity [5].

Therefore, it is important to accent that smart quality management creation in Industry 5.0
is not an alternative nor chronological continuation of the present Industry 4.0 concept [7]. It
is the result of a forward-looking perspective for the need of engineers’ and workers’ skills,
knowledge, and abilities to cooperate with machines and robots on the one side, and flexibili-
ties in manufacturing processes and environmental impacts on the other. Thus, smart quality
management in Industry 5.0 complements and extends Industry 4.0 [5,7].

Since Industry 5.0 is a new concept, the official definitions still represent abstract ideas
generalised from practice, focusing primarily on human aspects [11,32] and sustainable
and resilient intelligent production [5,33]. As such, early definitions of Industry 5.0 depend
on the research field. Consequently, we decided to provide a definition of Industry 5.0
that focuses on smart quality management, with an emphasis on a human-centric industry
environment. Notably, the definition of Industry 5.0, derived from the cited references,
reads as follows:

Industry 5.0 represents the concept of transition to a human–centric, sustainable, and
resilient industry [5,9,34] to improve process, products, and systems quality, driven by
advanced technologies, grouped into categories (adapted from [35]) for:

• individualised human–machine interaction (including artificial intelligence robotics,
and augmented and virtual reality);

• manufacturing system simulation (including CPS, digital twins of products, processes,
and entire systems); and

• data transmission, storage, and analysis technologies (including IIoT, cyber-security,
big data analytics, and edge computing).

2.2. Manufacturing Data

Big data in manufacturing (hereinafter big data) refers to shop floor data collected
during the manufacturing process. Big data implies a massive amount of raw, highly
distributed structured and unstructured data generated by multisource sensors [21,22],
intersystem communication, and related external information that is transformed into value
using new technology and analytical methods [19,23]. Thus, big data transformed into
valuable information provides new solutions to improve manufacturing system productiv-
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ity [21,24], increase productivity through quality improvement [30], and enable predictive
and proactive maintenance using manufacturing data [36].

However, the generation of big data also brings challenges [8] (e.g., massive amounts
of data to manage, store, and process; insufficient quality of the collected data; insufficient
data processing power [6], etc.), where the amount of relevant data per parameter is small,
and hence, it may lead to imprecise estimations [37]. Therefore, it is necessary to systemat-
ically reduce big data to precisely selected small data sets. Small data in manufacturing
(hereinafter small data) is the preprocessed and optimised information obtained from big
data [38] using computing technologies that consume less power and enable real-time
processing and efficient decision-making using advanced analytical methods. Therefore,
data preprocessing and optimization emphasise the role of edge computing as a technology
that can be utilised for data reduction [39]. Thus, we argue that by optimizing big data,
and using edge computing as a more efficient and sustainable technology compared to
cloud computing, it is possible to prepare a small data set for use in smart quality manage-
ment. These small data enable timely, meaningful insights into the system, organised in an
accessible and understandable way.

2.3. Edge Computing

Edge computing transforms the way data are handled, processed, and used from
various manufacturing sources (i.e., machines and devices) [39]. Recently, industry has
more frequently opted for edge computing technology [40]. This choice is driven by
the growth of IIoT-connected manufacturing resources, the application of data analytical
methods that require computing technology that consumes less power, and the need for
real-time decision-making [27,39]. This trend is also recorded in the increasing number
of scientific papers dealing with the application of edge computing in manufacturing
systems [41,42]. The reason for this trend is that edge computing’s distributed computing
allows data processing and storage close to manufacturing resources, which supports
sustainable and resilient production [26].

However, edge computing has limitations regarding power and processing resource
utilization and storage space size [27,28]. For this reason, working with small-scale data
sets [43] results in the optimised use of resources for power and processing, while reducing
the required storage space and analysis costs [43]. Thus, there is a need for both industry
and academia to substitute big data with precisely selected small data sets for use in smart
quality management systems without the loss of significant big data information [14].

3. Research Method

According to Phaal et al. [44], the term ‘conceptual’ implies ‘concerned with the ab-
straction or understanding of a situation’. Jose et al. [45] describes modelling and reasoning
on models as a ‘basic human capabilities for coping with, understanding, and influencing
the environment’. Conceptual modelling, as a research activity, ‘formally describes some
aspects of the physical and social world around us for purposes of understanding and
communication’ [46]. Therefore, conceptual modelling is one of the kernel activities in
information systems engineering [45].

The present research applies conceptual modelling [47–49] to develop a model for
edge computing data optimization in Industry 5.0. The developed model was inspired by
human-cyber-physical integration for data mining in the framework of the Industry 5.0
ecosystem [50–52]. Notably, the model development was informed by the practical field
experience of the research team in the implementation of smart quality management
systems in industry.

Subsequently, a proof-of-concept method [53,54] is provided for the developed model
for edge computing data optimization by applying it in industry using manufacturing data
on product quality. According to [55], a proof-of-concept, as a research practice, serves as
an instrument of knowledge construction in the study which has a set of activities (i.e.,
actions, movements, analyses, simulations, techniques, and tests, among others) for the
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assessment, understanding, validation, exploration, and learning of developed models in a
given area of knowledge.

Specifically, using a proof-of-concept method, the developed model was tested in real
industry conditions on manufacturing data collected in the process industry—that is, on the
production line of a vinyl floors company. The equipment used for the proof-of-concept was the
MELIPC MI5000 industrial computer developed by Mitsubishi Electric. The MELIPC MI5000 is
based on edge computing for real-time data collection, analysis, diagnosis, and feedback, and as
such is fit to validate the developed conceptual model using real industry data.

For the realization of the proof-of-concept, the research team, company engineers,
and shop floor workers cooperated. The research team consisted of 5 scientists from
a multidisciplinary field of industrial engineering and computer science. The expert
team from the company provided 2 people from top management, 3 senior engineers,
and 5 workers from the production. That is in total 15 experts. The realization of the
proof-of-concept lasted six months—covering the period from data collection to the final
optimization of the big data set into a precisely selected small data set—within which
interview meetings were held in the intervals of every two weeks.

4. Results
4.1. Conceptual Model Development

In the present subsection, the developed edge computing data optimization conceptual
model (Figure 1) is presented and explained. The model is composed of three phases: Phase
1: smart quality management problem definition; Phase 2: parameter identification and
IIoT data collection; and Phase 3: edge computing data preprocessing. The details of the
phases and steps of the model are presented in Table 1 to avoid redundancy and facilitate
the reading of the paper. Data optimization for smart quality management empowered by
edge computing from an Industry 5.0 perspective encompasses the developed conceptual
model, which is presented in Figure 2.
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Table 1. Phases and steps of the developed edge computing data optimization conceptual model.

Phase Step Step Definition Step Execution
Method

Participants

Data
Researchers

Engineering
Experts

Shop Floor
Workers

1—Smart quality
management
problem
definition

1. Determination of
manufacturing system’s
objective

Establishment of the
manufacturing system’s
objective based on the
established business goal
of the company

Interviews with
engineering experts
and shop floor
workers

X X X

2. Determination of the
location of the problem

Consideration of all
potential locations of the
problem (with the
possibility that the
problem location may
include one or more
machines in the
manufacturing system)

Experts’ and workers’
analysis X X

3. Determination of the
type of problem

Establishment of the data
mining goal based on the
company’s business goal,
with an emphasis on data
mining methodology
(data mining problem
type, namely,
classification or
regression)

Data mining X

2—Parameter
identification and
IIoT data
collection

1. Definition of criteria
for identifying
influential parameters

Definition of the criteria
for process parameter
identification based on the
company’s business goal

Interviews with
engineering experts
and shop floor
workers

X X X

2. Identification of
influential parameters

Selection of the influential
process parameters on the
basis of defined criteria

Experts’ and workers’
analysis X X

3. Big data collection of
influential parameters

Collection of data for
identified process
parameters in a
standardized format (TXT,
XLS, CSV, JSON, XML,
etc.) in real–time for a
defined period of time via
IIoT network

Edge computing X X X

3—Edge
computing data
preprocessing

1. Data visualization of
each influential
parameter

Visual presentation of the
collected data for
influential process
parameters that provides
information about their
nature (significant
deviations exist
[Figure 3a]) or no
significant deviations
[Figure 3b]) from the
usual values of process
parameters generated
during the manufacturing
process)

Visual analysis X

2. Elimination of
inconsistent, constant,
and noisy data

Manual removal of data
that are considered to
have significant defects
(constants or noisy values
of data due to
malfunctions in the
measuring instruments)

Manual rows
deletion—timestamp
data
OR
Manual columns
deletion—numerical
or categorical data
Note: The method is
chosen depending on
the type of data

X
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Table 1. Cont.

Phase Step Step Definition Step Execution
Method

Participants

Data
Researchers

Engineering
Experts

Shop Floor
Workers

3. Addition of values to
incomplete data

Data insertion of missing
values in the empty
spaces in a
two–dimensional matrix
by applying appropriate
analytical methods for
value addition based on
data type

Mean/median/mode—
missing values of
numeric data
OR
Multiple
imputation—missing
values of numerical or
categorical data
OR
Seasonal adjustment +
linear interpolation—
timestamp data with
both trend and
seasonality
Note: The method is
chosen depending on
the type of data

X

4. Reduction of
collected process
parameters

Reduction of data
dimensionality using
correlation analysis or
multiple linear regression
to decrease the number of
independent process
parameters and simplify
the data set

Correlation analysis—
classification data
mining type
OR
Multiple linear
regression—
regression data
mining type
Note: The method is
chosen depending on
the data mining type

X

5. Definition of the
dependent parameter

Selection of the output
value of process
parameters based on the
established data mining
goal

Experts’ and workers’
analysis X X

6. Optimization and
creation of a precisely
selected small data set

Preprocessing of the
collected data set consists
of influential process
parameters using range
analysis to calculate the
difference between the
maximum and minimum
values by reducing all
collected files to one file
with the same dimension.
This is followed by
linking the preprocessed
data set to the dependent
parameter

Range analysis X
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Figure 2. Data optimization for smart quality management empowered by edge computing from
Industry 5.0 perspective.

4.1.1. Phase 1—Smart Quality Management Problem Definition

Phase 1 aims to define the problem in a systematic way for the specific manufacturing
system. This implies gaining an adequate understanding of the processes and activities
within that manufacturing system. Specifically, in order to transform a manufacturing system
into a smart manufacturing system in Industry 5.0, it is essential that data researchers fully
understand how the particular processes work in the company, which will enable them to gain
an awareness of which data should be analysed and modelled and which advanced analytical
method should be used. Achieving a proper understanding of an entire manufacturing system
is a complex task due to the necessity of obtaining knowledge about all of the processes as
well as establishing cooperation with the engineering experts and shop floor workers who
provide that knowledge to data researchers. The developed conceptual model proposes three
steps for the smart quality management problem definition (Phase 1): (1) determination of
the manufacturing system’s objectives; (2) determination of the location of the problem; and
(3) determination of the type of problem (for details, see Table 1).

4.1.2. Phase 2—Parameter Identification and IIoT Data Collection

This phase enables the real-time collection of data generated during the manufacturing
process. Notably, it is necessary to ensure systematic data collection. This involves the
process of constant communication and discussion between engineering experts, shop
floor workers, and data researchers. Subsequently, the data researchers prepare the data
based on the knowledge and experience of experts and workers. Notably, when using edge
computing data optimization in Industry 5.0, it is necessary to ensure the optimal use of
the available database space. The collection of data related exclusively to the identified
influential process parameters, which directly affect the occurrence of a defined problem
in the manufacturing system, enables the optimal use of database space. The developed
conceptual model proposes three steps for parameter identification and IIoT data collection
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(Phase 2): (1) definition of criteria for identifying influential parameters; (2) identification
of influential parameters; and (3) big data collection of influential parameters (see Table 1)
that are visualized to determine the quality of the collected data (Figure 3).
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4.1.3. Phase 3—Edge Computing Data Preprocessing

The edge computing data preprocessing phase covers all activities to construct the
final optimised small data set prepared to feed into the mathematical data modelling tools
in order to perform an analysis of the process data and develop a mathematical model for
data processing. Tasks include table records analysis and attribute selection, as well as the
transformation and cleaning of data for the modelling tools. Therefore, the starting point of
Phase 3 is an adequate understanding of the collected raw data (Phase 2). Understanding
the raw data sets means interpreting the values of the collected big data. The developed
conceptual model proposes six steps for preprocessing the edge computing data (Phase 3):
(1) data visualization of each influential parameter, (2) elimination of inconsistent, constant
and noisy data, (3) addition of values to incomplete data, (4) reduction of collected process
parameters, (5) definition of the dependent parameter, and (6) optimization and creation of
a precisely selected small data set. Notably, it is not necessary to implement all the defined
steps from the data preprocessing phase when applying the model in a manufacturing
environment. The implementation of the defined steps is reflected in the generalizability of
the developed conceptual model, which depends exclusively on the nature of the collected
big data and the problem defined in Phase 1 (see Table 1).

4.2. Proof-of-Concept

This section presents the proof-of-concept for the developed edge computing data
optimization conceptual model. The proof-of-concept was accomplished by applying
the conceptual model to the timestamp manufacturing data collected from an industry
in an Industry 5.0 human-cyber-physical environment (Figure 2). The main goal of the
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case company in implementing the developed conceptual model was the detection of
poor-quality products in production to increase the company’s efficiency.

Specifically, we applied the developed conceptual model to manufacturing data col-
lected from the vinyl flooring industry. Vinyl flooring is produced and delivered in the
form of a roll, which conditions the existence of a continuous production line. The specific
production line consists of 12 machines and is 850 m long. Since the number of machines
increases the complexity of the manufacturing process and planning and control for pro-
duction, the operations divided the production line into 5 clusters. A cluster is a part
of the production line that includes one or more machines, where experience has shown
that inconsistencies in the process parameters on one machine can potentially result in a
poor-quality product on another subsequent machine. In addition, the machines must be
grouped in the sequence of production operations.

The equipment used for validation of the developed conceptual model is an industrial
computer based on edge computing for real-time data collection and analysis. The applied
edge computing technology is the MELIPC MI5000, a solution developed by Mitsubishi
Electric. The goal of using the MELIPC MI5000 is to systematically reduce big data by
optimizing it into a precisely selected small data set ready to be used for later data modelling.
The results of the proven concept based on the manufacturing data are presented in Table 2.

Table 2. Proof-of-concept results on the data from the case manufacturing system.

Phase Step Step Execution Method Results

1—Smart quality
management problem
definition

1. Determination of
manufacturing system’s
objective

Interviews with engineering
experts and shop floor
workers

• Defined manufacturing system’s
objective: Improved quality of the
selected product (from the representative
group) for reducing the number of
products that do not meet the required
quality level

2. Determination of the
location of the problem

Experts’ and workers’
analysis

• Defined location of the problem: the
second coating machine, Cluster 1

3. Determination of the type
of problem Data mining • Defined problem type: classification

2—Parameter identification
and IIoT data collection

1. Definition of criteria for
identifying influential
parameters

Interviews with engineering
experts and shop floor
workers

• The defined criterion: Selection of the
process parameters based on similar
tolerances for the representative group
of products (the representative group of
products is the one produced in the
largest quantities in the manufacturing
system when looking at annual
production)

2. Identification of influential
parameters

Experts’ and workers’
analysis

• Number of influential parameters
identified: 15

• (line speed, drum temperature, viscosity,
etc.)

3. Big data collection of
influential parameters Edge computing

• Data collection period: 33 days
• Data format: CSV file
• Number of collected files: 6534
• Number of data in each file: 300
• Total amount of data units: 29,403,000
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Table 2. Cont.

Phase Step Step Execution Method Results

3—Edge computing data
preprocessing

1. Data visualization of each
influential parameter Visual analysis • Unbalanced data set

2. Elimination of inconsistent,
constant, and noisy data

Manual rows deletion of
timestamp data

• Number of reduced files: 3802
• Total amount of data units: 17,109,000

3. Addition of values to
incomplete data Visual analysis

• Not implemented due to non–existence
of incomplete data values

4. Reduction of collected
process parameters Correlation analysis

• Number of remaining influential
parameters after reduction: 12

• Total amount of data units: 13,687,200

5. Definition of the dependent
parameter

Experts’ and workers’
analysis

• The dependent parameter: binary (a
value of ‘0’indicates that the final
product has no defects, while a value of
‘1 indicates that the final product has
defects in the form of poor quality.)

• Total number of poor-quality final
products: 5

6. Optimization and creation
of a precisely selected small
data set precisely selected

Range analysis
• 3802 CSV files into a single unique CSV

file containing 3802 data samples
• Total amount of data units: 45,624

Note: The third column is repeated from Table 1. Although redundant, it is repeated to enable readers to better
follow the results exposition.

Phase 1—Smart quality management problem definition (Table 2): The first phase of the
conceptual model was one of the most demanding for the verification of the conceptual
model. The reason for this is the difficulty of defining the problem when the manufac-
turing process is complex. The complexity of the manufacturing process is reflected in
the interdependence of all process parameters for the representative group of products
(the representative group of products was composed of products that share the same
parameter configuration for the observed cluster of machines—Cluster 1) on the entire
production line. The interdependence of all process parameters means that inconsistencies
and non-compliances in process parameters that occur, for example, at the beginning of
the production line, lead to the appearance of the observed poor-quality product in one of
the subsequent operations. This leads to inaccuracies when deducing the exact location
of a particular discrepancy. In very complex manufacturing processes, it is difficult to
consider the entire production line to locate where a problem occurs. As a result, through
expert analysis, Cluster 1 was identified as having the greatest possibility that a mismatch
in the process parameters on one machine could potentially lead to poor-quality products
on one of the subsequent machines. Furthermore, the analysis showed that preventing
poor-quality products from exiting Cluster 1 would lead to significant waste reduction
on the whole process line. Notably, Cluster 1 consists of three machines: first coating,
second coating, and printing. Additionally, by analysing the production data, it is found
that the highest number of poor-quality products in the previous production period was
detected in Cluster 1, specifically on the second coating machine. Thus, it was found that
the interdependence of process parameters on the selected machine is minimised, since
the machine is located at the very beginning of the production line where the emergence
of poor-quality products is exclusively related to Cluster 1. Therefore, the location of the
problem in the case company is the second coating machine, based on which the smart
quality management problem is defined as a classification type in data mining.
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Phase 2—Parameter identification and IIoT data collection (Table 2): In this phase, the
influential process parameters were defined. Fifteen influential process parameters were
identified for the representative group of products on the second coating machine. Then,
data for the influential process parameters were collected in real-time, enabled by the
application of edge computing. Edge computing was used in the manufacturing system,
where data were collected at the point in the manufacturing process where they were
generated. This enabled a later analysis of the process data from the time of their collection.
The application of edge computing also required the development of data modelling on an
optimised, precisely selected small data set. Therefore, a 33-day time period for collecting
process parameters was chosen for two reasons, namely due to the storage limitations of
edge computing technology and because most of the products belonging to the relevant
product group were produced in that time period (according to the production plan and
program). In this phase, using edge computing for the defined time period, 29,403,000 data
units were collected. The quantity of data collected indicates that the limitations of the edge
computing storage space did not negatively impact the number of collected data units.

Phase 3—Edge computing data preprocessing (Table 2): This phase was performed using
edge computing technology. Based on the visual presentation of the data, it was found that
most of the process parameter values are within the defined tolerances for process parameters.
Therefore, the collected process parameter values represent an unbalanced set of data that
mostly contains data on the production of final class ‘A’ products (i.e., ‘good’ data) and a
very small number of ‘bad’ data that provide information about poor or insufficient product
quality. By further monitoring and elaborating the steps in this phase, the total number of
data units collected decreased significantly. The reasons for this are as follows:

• elimination of inconsistent, constant, and noise data was done based on expert knowl-
edge which included the manual rows deletion of timestamp data. That led to a
reduction in the total number of data units collected by approximately 50%, leaving a
total amount of 17,109,000 data units (see Figure 4 and Table 2); and

• reduction of the number of collected process parameters using correlation analysis,
which led to a decrease in the total number of influential process parameters, from
15 to 12, based on the Pearson correlation coefficient [56,57] (Table 2), by ejecting
parameters that are highly correlated (ρ exceeds the value of 0.8 and −0.8, respectively,
where values are calculated based on Equation (1) from Figure 4).

Subsequently, a dependent parameter of binary character is defined, which provides
information when quality errors occur in the collected data set. The binary character of the
dependent parameter was chosen for easier product classification. Further, to determine
the variability of the parameters using range analysis [58,59], each individual CSV file was
analysed, after which the value of the difference between the maximum and minimum
values was obtained. In other words, range analysis was used to optimise 3802 CSV files
into a single unique CSV file (Figure 4). Notably, this unique CSV file contains information
about all 3802 CSV files. Thus, the total amount of data was reduced to 45,624 data units
(Figure 4). After optimization, the values of the collected process parameters and the values
of the dependent parameter were manually paired to create a precisely selected small
set of data for optimizing edge computing data for smart quality management from the
Industry 5.0 perspective.
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5. Discussion and Conclusions

In the present research, innovative big data optimization is proposed using edge com-
puting inspired by human-cyber-physical integration for data mining in the Industry 5.0
ecosystem. Recently, researchers have started to point out the advantages of small data [60,61],
characterised as ‘the tiny clues that uncover huge trends’ [62]. We argue that optimised
small data (sets) enable timely, meaningful insights into the manufacturing system that are
organised in an accessible and understandable way, while enabling real-time decision-making.
Thus, the present research showed that starting from and optimizing big data, and by using
edge computing technology, it is possible to prepare a precisely selected small data set for use
in smart quality management without losing significant information contained in the big data.
In the following paragraphs, the main contributions of the present research are presented.

The proposed conceptual model is an innovative big data optimization method. The proposed
conceptual model was developed as an innovative big data optimization method for edge
computing aligned with real-time data acquisition and smart quality management problem
definition, and inspired by the industrial data mining approach. The developed model
consists of three main phases (Figure 1): smart quality management problem definition,
parameter identification and IIoT data collection, and edge computing data preprocessing.
Each phase is divided into a number of steps defined for the adequate and unambiguous
implementation of the model. The development of the conceptual model was motivated
by the lack of an adequate methodology for preprocessing manufacturing data in the
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literature. At the same time, the research [63] stresses the importance of data preprocessing
because: (1) real-world data is impure; (2) high-performance mining systems require quality
data; and (3) quality data yields concentrative patterns. Moreover, many preprocessing
techniques have been reviewed in the scientific literature [64–66], but the lack of data
preprocessing methodologies still remains. Further, in the reviewed scientific literature,
the cross-industry standard process for data mining (CRISP–DM) [67,68] methodology,
in which researchers focus on big data [69–71], is most often used as a basis for data
preprocessing [72,73]. However, the need and possible challenges for the optimization of
big data collected in manufacturing systems into a small data set are not considered in
CRISP-DM. Thus, the present conceptual model using edge computing was developed with
the aim of the systematic reduction and optimization of big data into a small and precisely
selected data set ready to be used for the modelling, testing, and subsequent deployment
of the developed predictive model. By fulfilling this aim, we have successfully responded
to the gap in the data preprocessing methodologies in the available literature.

The proposed conceptual model promotes the knowledge integration of blue-collar
workers (shop floor workers) and white-collar workers (engineering experts) with data
researchers. Human knowledge plays the central role in the developed conceptual model,
as it should in manufacturing systems [5,9]. Knowledge integration is obtained in the
synergy of industry and academia, where human domain expert knowledge, along with
Industry 5.0 advanced technologies (i.e., IIoT, edge computing, and advanced analytics
methods), is the basis for the creation of quality management systems [29]. Informed by
the conducted proof-of-concept, it is expected that the implementation of the developed
conceptual model in industry will: (1) reduce the cost for big data storage, since a much
smaller data set can be used; (2) achieve more secure processes with the use of edge
computing; and (3) enable the inclusion of human domain expert knowledge to create
smart quality management systems.

The developed conceptual model enables the implementation of smart quality management from
the Industry 5.0 perspective. The developed conceptual model points out the central position
of the human factor [5,9] in smart quality management systems. The human domain
expert knowledge, physical, and virtual components are integrated via the developed
model (Figure 2). This integration is enabled by the application of the Industry 5.0 human-
centered concept and advanced technologies [35]—for example the IIoT, edge computing,
and advanced analytics methods—via the developed conceptual model. Further, the proof-
of-concept performed with manufacturing data validated the future possibility of creating
HCPS in the case of a vinyl floor producer. Therefore, the proposed methodology (i.e., the
developed conceptual model) supports the development of HCPS and contributes to digital
sustainability and further research on the Industry 5.0 concept (Figure 2).

The proof-of-concept was performed with the use of real industry data. The developed
conceptual model was tested based on industrial application through manufacturing
data optimization in a company from the vinyl flooring sector. At the time of this study,
there is a gap of practical proof in the relevant literature on the developed theoretical
frameworks for both Industry 4.0 and Industry 5.0 [6,74–76]. Specifically, evidence of the
implementation of data analytics, such as Industry 4.0 and Industry 5.0 technology, is
scarce [68,77–79]. To address this gap, the present research demonstrated that by using
the developed conceptual model for edge computing data optimization for smart quality
management from the Industry 5.0 perspective, it is possible to prepare a precisely selected
small data set without losing significant information contained in the big data. Notably, the
manufacturing system’s objectives were considered in the developed conceptual model
when optimizing the manufacturing data.

The proof-of-concept was performed using manufacturing small data. The conceptual model
was validated by proving the concept with manufacturing data from the case company that
was optimised into small data [38,80,81]. The proof-of-concept was achieved by applying
the optimisation approach of the proposed conceptual model (Figure 1) based on expert
domain knowledge (Figure 2). Notably, the manufacturing problem was defined, influential
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parameters were identified, and data were collected using the IIoT network. As a result,
by using edge computing data optimization, the 29,403,000 data units (i.e., big data) were
reduced to 45,624 data units (i.e., small data) without losing the information contained in the
big data for decision-making. The preservation of information was achieved by decreasing
the number of influential process parameters by ejecting parameters that were highly
correlated via correlation analysis, and reducing collected data files into single samples for
each file via range analysis (see Figure 4 and Table 2) [60,61]. Then, samples were merged
into a unique file containing 3802 samples for 12 influential process parameters (Figure 4).
Notably, the number of data units was reduced by 99.73%.

We are aware that the development of a conceptual model for edge computing data
optimization opens additional research opportunities in the field of smart quality manage-
ment, given that the optimised small data set needs to be further analysed and processed. It
further opens the question of whether optimised small data would be sufficient to achieve
high accuracy in the remaining data mining phases (i.e., modelling the data, training and
testing, and verification and deployment). These questions, however, are beyond the
scope of the present research. In this research phase, the data set for edge computing was
optimised according to state-of-the-art statistics methods, and prepared for further data
mining considering the most important aspects of Industry 5.0; i.e., digitally sustainable,
human-centric and resilient manufacturing processes. Future research will focus on the
remaining data mining phases based on optimised small data sets for further advancement
of edge computing self-prediction applications from the Industry 5.0 perspective.
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