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Listeria monocytogenes has been implicated in numerous outbreaks and related deaths of listeriosis. In food pro-
duction, L. monocytogenes occurs in raw food material and above all, through postprocessing contamination.
The use of next‐generation sequencing technologies such as whole‐genome sequencing (WGS) facilitates food-
borne outbreak investigations, pathogen source tracking and tracing geographic distributions of different clo-
nal complexes, routine microbiological/epidemiological surveillance of listeriosis, and quantitative microbial
risk assessment. WGS can also be used to predict various genetic traits related to virulence, stress, or antimi-
crobial resistance, which can be of great benefit for improving food safety management as well as public health.
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Listeria monocytogenes is heterogeneous species regarding virulence;
its population structure is currently grouped into 14 different sero-
types (including newly described hypervirulent serovar 4h) and four
evolutionary lineages (I, II, III, and IV) that have been divided into
multiple clonal complexes (CCs) and sequence types (STs) based on
multilocus sequence typing (MLST) (Orsi et al., 2011; Ragon et al.,
2008; Yin et al., 2019). L. monocytogenes CCs include (i) hypervirulent
lineage I with representative CCs such as CC1, CC2, CC4, and CC6 iso-
lated from clinical cases and nonfood contact surfaces, (ii) hypoviru-
lent lineage II with representative CCs such as CC9 and CC121 that
persist and colonize food contact surfaces, and (iii) intermediate iso-
lates such as CC3, CC5, CC8+CC16, CC37, and CC155 that are found
in both clinical and food settings (Chen et al., 2016; Health Canada,
2011; Matle et al., 2020). Strains from lineages III and IV have demon-
strated significant biodiversity and are mostly identified in animals
(Kuenne et al., 2013; Ward et al., 2008, 2010; Wiedmann, 2002;
Wiedmann, 2003). Although the CCs of L. monocytogenes differ in their
virulence, current regulations presume that all strains are equally
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Table 1
Selected multistate (US) and international outbreaks of listeriosis identified using WGS

Year Location No. of Cases/No. of
Deaths

Food Type References

United States of America
2020 Multistate 12/1 Deli meats Centers for Disease Control and Prevention, 2020
2020 Multistate 36/4 Enoki Mushrooms Centers for Disease Control and Prevention, 2020
2019 Multistate 8/1 Hard-boiled eggs Centers for Disease Control and Prevention, 2019
2019 Multistate 10/1 Deli sliced meat and

cheeses
Centers for Disease Control and Prevention, 2019

2018 Multistate 4/0 Pork products Centers for Disease Control and Prevention, 2018
2018 Multistate 4/1 Deli Ham Centers for Disease Control and Prevention, 2018
2016a Multistate 9/3 Frozen vegetables Centers for Disease Control and Prevention, 2016
2016 Multistate 2/1 Raw milk Centers for Disease Control and Prevention, 2016
2016a Multistate 19/1 Packaged salads Centers for Disease Control and Prevention, 2016
2015a Multistate 30/3 Soft cheese Centers for Disease Control and Prevention., 2015
Europe
2018/

19
Germany 112/7 Blood Sausage Halbedel et al., 2020

2019 Spain 200/3 Roasted pork meat
product

World Health Organization (WHO), 2019

2017/
19

Netherlands,
Belgium

21/3 RTE meat products European Centre for Disease Prevention and Control, European Food Safety Authority,
2019

2019 United Kingdom 9/7 RTE Sandwiches Public Health England, 2020
2018 Austria 13/1 Liver paté Cabal et al., 2019
2014/

19
Multicountry 22/5 Cold smoked fish

products
European Food Safety Authority and European Centre for Disease Prevention and
Control, 2019

2015/
18

Multicountry 47/9 Frozen corn European Food Safety Authority, 2018

2014 Denmark 41/17 Deli meat Kvistholm Jensen et al., 2016
2012/

16a
Czech Republic 26/3 Turkey meat products Gelbíčová et al., 2018

South Africa
2017 1060/216 RTE Meats Polony World Health Organization (WHO), 2018

a PFGE was also used.
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pathogenic (French Agency for Food, Environmental and Occupational
Health and Safety, 2020).

Although a rare disease, listeriosis causes a very high proportion of
deaths and severe cases especially in elderly and immunocompromised
persons, pregnant women, and infants. Listeriosis occurs after inges-
tion of L. monocytogenes via contaminated food. Centers for Disease
Control and Prevention (U. S. CDC) estimates that the number of con-
firmed cases of listeriosis is approximately 1600 cases every year in the
USA (Centers for Disease Control and Prevention, 2022) while the inci-
dence rates of listeriosis vary by year in the EU (European Food Safety
Authority and European Centre for Disease Prevention and Control,
2021). However, no statistically significant upward or downward
trend regarding listeriosis was seen from 2016 to 2020 (European
Food Safety Authority and European Centre for Disease Prevention
and Control, 2021). In 2020, 27 EU countries reported 1876 listeriosis
cases which included 16 outbreaks and 168 deaths (European Food
Safety Authority and European Centre for Disease Prevention and
Control, 2021). L. monocytogenes can be found in a wide range of
ready‐to‐eat foods that do not undergo any kill step before consump-
tion. Ingestion of even low numbers of L. monocytogenes in a food
can produce listeriosis in vulnerable groups. The world’s largest liste-
riosis outbreak occurred in South Africa from January 2017 to July
2018 with a total of 1060 cases and a 27% mortality rate. Ready‐to‐
eat processed meat products were confirmed as the source of infection
(Smith et al., 2019), and WGS is now increasingly being used in many
jurisdictions to enhance the surveillance of listeriosis outbreaks.
Selected multistate (US) and international outbreaks of listeriosis iden-
tified using WGS are presented in Table 1.

In response to recent technological advances in DNA sequencing
technologies and the fact that PFGE is now abandoned by bioRad, pub-
lic health laboratories in the EU/EEA are now transitioning from
PFGE‐ to WGS‐based typing methods. DNA sequencing can be con-
ducted on various platforms including Roche 454 Life Sciences
(short‐read technologies which belong to second‐generation sequenc-
2

ing but its role in surveillance of listeriosis has been minimal), Illu-
mina, Ion Torrent (short‐read third‐generation sequencing
technologies), PacBio, and Oxford Nanopore (long‐read fourth‐
generation sequencing technologies). With long‐read sequencing, the
quality of assemblies can be improved and also time to obtain results
decreases from 3 days (for Ilumina 2 × 300 bp) to 2 days (NextSeq) or
1.5 days or in urgent situations even to hours (Nanopore Sequencing).

WGS is increasingly being used as the primary epidemiological
surveillance tool in national programs, outbreak investigations, and
environmental monitoring programs for food‐processing facilities to
support food safety management systems and protect public health
(European Centre for Disese Prevention and Control, 2020; Jackson,
Tarr et al., 2016, Jackson, Stroika et al., 2016; Kwong et al. 2016;
Schmid et al., 2014). There are different ways how the WGS data
can be elaborated to deduce genetic relatedness between isolates such
as single‐nucleotide variants (SNP), gene‐by‐gene allelic profiling
using core genome (cgMLST), or whole‐genome multilocus sequence
typing (wgMLST). The advantage of cgMLST approach is the stability
of the scheme allowing an automated analysis workflow including an
alert system. SNP analysis has the advantage of a slightly higher reso-
lution, but the disadvantage to find suitable reference genomes makes
automated workflows challenging and in general the entire SNP pro-
cess more time consuming. Further, wgMLST can provide a higher res-
olution and can be a useful tool for comparing closely related isolates,
where the probably missing targets (compared to cgMLST) are limited.
Benefits and future insights of WGS

The benefits of WGS‐based strain characterization compared to tra-
ditional methods include speed, universality, robustness, superior dis-
criminatory power, and the opportunity to gain new knowledge of
both the geographic origin and evolutionary status of outbreak isolates
(Jenkins et al., 2019; Ruppitsch et al., 2019). WGS also can lead to a
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better understanding of the acquisition and evolution of virulence fac-
tors, stress, and antimicrobial resistance in L. monocytogenes (Franz
et al., 2016). The intraspecific variation in different genetic traits
and identification of biomarkers that predict microbial behavior can
also be used to strengthen current quantitative microbiological risk
assessments (QMRAs) (Lakicevic et al., 2022). QMRAs have been done
for various pathogen/food product combinations with the exposure
assessment and hazard characterization steps focused on pathogenic
species as a whole (European Food Safety Authority, 2019; Tirloni
et al., 2018; U.S. Food and Drug Administration and Department of
Agriculture, 2003). Ongoing improvements in the field of omics tech-
nology are expanding our current understanding of intraspecific vari-
ability based on different and more accurate bioinformatics tools
(Brul et al., 2012; Den Besten et al., 2018; Fritsch et al., 2019;
Haddad et al., 2018; Njage et al., 2020; Rantsiou et al., 2018;
Ruppitsch et al., 2019). These advances are also increasing our knowl-
edge of pathogen strain/subtype risk ranking relative to their differ-
ences in virulence, stress robustness, fitness, and ability to reach the
consumers (Chen et al., 2011; Collineau et al., 2019; Den Besten
et al., 2018). The QMRA input parameters can be adjusted for each
strain to fine‐tune the QMRA output. Fritsch et al. (2018) demon-
strated the potential of WGS to refine QMRA models when considering
the pheno–genotype association of L. monocytogenes. The authors
described the growth variability of L. monocytogenes at low tempera-
tures and defined three groups for this pathogen based on differences
in virulence. According to the QMRA output, the CCs that contribute
the most to consumer exposure are not those that cause the most liste-
riosis cases. This could explain why a low number of sporadic listerio-
sis cases in France were associated with the consumption of
crustaceans contaminated by hypovirulent lineage II clones such as
CC121 and CC9 (European Food Safety Authority and European
Centre for Disease Prevention and Control, 2018; Fritsch et al.,
2018; Leclercq et al., 2020; Painset et al., 2019).
Drawbacks

Despite the proven superiority of WGS in outbreak investigations
and the successful implementation of this new technology for surveil-
lance in public health and food safety in several countries (Wang
et al., 2016), its use remains challenging for many countries due to defi-
ciencies in infrastructure and resources (Apruzzese et al., 2019; Grace,
2015), including functional surveillance systems to assemble isolates
and metadata from clinical, food, and environmental samples
(European Food Safety Authority Working Group on Developing
Harmonised Schemes for Monitoring Antimicrobial Resistance in
Zoonotic Agents, 2008; Food and Agriculture Organization of the
UnitedNations, 2016). Implementation ofWGS as a tool for surveillance
and outbreak investigation also requires an appropriate IT infrastruc-
ture for interpretation, internet connection/speed, handling, storage,
and sharing of WGS data (Bergholz et al., 2014). Additional hurdles to
implementingWGS include cost, perception of cost, lack of trust for data
sharing, sustainability (e.g., training course on WGS technique), and
possible imbalanced trade opportunities (Food and Agriculture
Organization of the United Nations, 2016). However, given the rapidly
declining cost of this technology, WGS should become more attractive
and soon be of benefit to many countries (Food and Agriculture
Organization of the United Nations, 2016; Nastasijevic et al., 2017).
Future challenges in food safety and public health will require global
data sharing to identify and characterize foodborne pathogens in a stan-
dardized, harmonized workflow in real time (Taboada et al., 2017).
Persistence and distribution of different CCs in food

L. monocytogenes can persist in difficult‐to‐remove biofilms on abi-
otic surfaces and can be isolated from equipment, floors, and cold stor-
3

age areas over long periods of time (Lakicevic and Nastasijevic, 2017).
Persistence of L. monocytogenes in specific environmental ‘niches’ (i.e.,
slicing machine) may lead to continued microbial cross‐contamination
of retail products (EFSA Panel on Biological Hazards et al., 2018).
Numerous studies have confirmed that slicers can serve as a vehicle
for cross‐contamination of deli foods with different foodborne patho-
gens (Crandall et al., 2012; Vorst et al., 2006). To decrease cross‐
contamination from deli slicers, the U.S. FDA 2013 Food Code requires
that slicers be cleaned and sanitized at least every four hours (U.S.
Food and Drug Administration, 2013). In studies involving retail deli
environments, the prevalence of L. monocytogenes ranged from 0 to
more than 30% (Etter et al., 2017; Hammons et al., 2017; Hoelzer
et al., 2011; Sauders et al., 2009; Simmons et al., 2014).

Some researchers suggest that persistence is the result of complex
interactions between L. monocytogenes and the environment (Luque‐
Sastre et al., 2018; Taylor and Stasiewicz, 2019). Although the exact
persistence mechanisms are still unclear, the key contributors to L.
monocytogenes persistence in food‐processing facilities include
enhanced biofilm formation and resistance to sanitizers (Aase et al.,
2000; Borucki et al., 2003; Heir et al., 2004; Lourenço et al., 2009;
Lundén et al., 2000, 2003; Norwood and Gilmour, 1999; Pan et al.,
2006). Importantly, lineage II hypovirulent clones of L. monocytogenes,
CC9 and CC121, were found to create more biofilm and grow better
than lineage I hypervirulent clones (CC1, CC2, CC4, and CC6) in the
presence of low levels of benzalkonium chloride (BC) (Maury et al.,
2019). CC8/VT59, associated with previous Canadian outbreaks
(Knabel et al., 2012), possess a strong capacity for biofilm formation,
which may support persistence in food production environments and
subsequent contamination of foods (Verghese et al., 2011). In addi-
tion, Pérez‐Baltar et al. (2021) found that ST121 (CC121) strains are
strong biofilm producers, with some of these strains containing the
transposon Tn6188, associated with enhanced tolerance toward qua-
ternary ammonium compounds (QACs). Along with Tn6188, L. mono-
cytogenes possesses some other BC‐tolerant determinants such as the
bcrABC cassette and emrE detected on mobile genetic elements (MGEs)
that are primarily present among CCs within lineage II (Dutta et al.,
2013; Kovacevic et al., 2016). A recent publication by Castro et al.
(2021) suggested that MGEs aid in the persistence of L. monocytogenes
on dairy farms and can be spread via the food industry. MGEs are
thought to be critical in increasing the antimicrobial resistance of L.
monocytogenes strains and in creating new resistant phenotypes
through horizontal gene transfer between Listeria and some other spe-
cies. Another recent study (Palaiodimou et al., 2021) using WGS also
showed that nonpathogenic L. innocua and L. welshimeri carried the
bcrABC cassette and qacH, suggesting that these strains may be the
reservoirs of BC determinants.

Based on long‐term surveillance data, both raw and processed
foods can become contaminated with L. monocytogenes throughout
food production (Gómez et al., 2015; Thimothe et al., 2002;
Wijnands et al., 2014), with certain food categories more often con-
taminated (Wagner et al., 2007), including dairy (Linan et al.,
1988), meat (Borovic et al., 2014; Olsen et al., 2005), seafood
(Acciari et al., 2017), and mixed ready‐to‐eat products (Soderqvist
et al., 2016). Some CCs appear to have a predisposition for certain food
types, for example hypervirulent clones (e.g., CC1 and CC87) for dairy
products and raw seafood, and hypovirulent clones (e.g., CC9 and
CC121) for meat and fish products (Maury et al., 2019; Painset
et al., 2019; Zhang et al., 2020). A link between ST121 and fish prod-
ucts has been reported in the study conducted by Knudsen et al. (2017)
while ST155 of lineage II was isolated from leafy vegetables in Nigeria
(Nwaiwu et al., 2017). In addition, food‐related hypovirulent clones
can still cause listeriosis in immunocompromised hosts (Maury et al.,
2016). Such low virulence may be due to a loss‐of‐function mutation
in virulence genes such as inlA (Fagerlund et al., 2016; Maury et al.,
2019). Maury et al. (2016) demonstrated increased invasion of the
CNS and placenta by the hypervirulent clone CC4. Another epidemic
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clone, CC1, is also associated with more severe invasive (systemic)
forms of listeriosis, and its prevalence was remarkably higher in rumi-
nants than in human infection (Dreyer et al., 2016).
Sources of L. monocytogenes and control measures

Several possible mechanisms throughout the farm‐to‐table chain
can lead to the contamination of food products with Listeria. L. mono-
cytogenes may be introduced into or spread elsewhere within a facility
via employees, transport equipment, tools, animals or pests, and raw
materials or ingredients (Anonymous, 2017; Ivanek et al., 2005).
Incoming raw materials contaminated during growing and harvesting
can also lead to contamination of food‐processing equipment if appro-
priate controls are not in place (Ministry for Primary Industries, 2017).
Although L. monocytogenes can be inactivated during thermal process-
ing, the risk of postprocessing contamination of products from the
facility environment and equipment continues to challenge the food
industry. This is especially critical for RTE foods that support the
growth of L. monocytogenes and have extended shelf‐lives (Food and
Drug Administration and Center for Food Safety and Applied
Nutrition, 2017; Health Canada, 2011; U.S. Department of
Agriculture Food Safety and Inspection Service, 2012). Therefore, an
integrated approach for the control of L. monocytogenes should be
applied along the farm‐to‐fork continuum. These control measures
should be appropriately designed and synergistically implemented at
multiple steps in the food chain and be based on the scientific litera-
ture including predictive microbiology and validation studies. Other
studies could provide scientific proof that antilisterial control mea-
sures can reduce the levels of Listeria in foods and environmental
samples.
Examples of contamination routes

WGS‐based typing methods are important and powerful tools for
source tracking in the food industry. A proof of concept on the practi-
cal use of WGS to define the entry and contamination routes of L.
monocytogenes in a meat establishment has been described by
Nastasijevic et al. (2017). In this study, WGS was used to characterize
eight environmental isolates of L. monocytogenes (out of 53 Listeria
spp.‐positive samples) from various locations in a pork‐processing
facility including the slaughter line, chilling chamber, deboning equip-
ment, modified atmosphere packaging (MAP) equipment, and dis-
patch. WGS grouped these eight isolates into 1/2a, 1/2c, and 4b
serotypes and three clonal complexes and sequence types ‐ ST26,
ST9, and ST1. The isolates of L. monocytogenes originated from MAP,
chilling chamber, and dispatch units were genetically similar and/or
the same as isolates from the slaughter line. Accordingly, the authors
concluded that contamination originated from the slaughter line and
highlighted WGS as a strong supporter of food safety management/-
surveillance systems in meat establishments. Based on the research
conducted by Demaître et al. (2021); WGS revealed that the hypovir-
ulent CC9 clone persisted in the carcass splitter for more than a year.

Using WGS, transient and resident strains with unique or even clo-
sely related profiles can be differentiated, which will facilitate the
implementation of control measures in food industry (Brown et al.,
2019). Also, this will lead to a better understanding of contamination
routes along with potentially new pathways of contamination. This
information can be shared not only within the facilities involved in
contamination event but within the whole food sector (Jagadeesan
et al., 2019). Further, it will lead to a reduction in costs associated with
recalls of contaminated food products. However, many processors
remain reluctant to speciate or further characterize Listeria isolates
by WGS due to regulatory implications, complexity of analysis, costs,
and time to obtain results. For example, in‐house sequencing by food
manufacturers and food testing laboratories will only be cost effective
4

if a large number of strains are sequenced simultaneously and if WGS
equipment is used for multiple applications (WGS of pathogenic and
spoilage microorganisms, starter cultures, and metagenomics)
(Nastasijevic et al., 2017). Additionally, the infrastructure should not
be underestimated as huge amounts of data produced by WGS need
to be transferred through the internet to be available and useful to
the global community (Food and Agriculture Organization of the
United Nations., 2016).
Infectious routes and WGS-based outbreak investigations

In one prolonged listeriosis outbreak involving L. monocytogenes
4b ST6 CT7448, WGS was used to match clinical isolates to a cheese
sample and to samples from diverse sites within the production envi-
ronment (Nüesch‐Inderbinen et al., 2021). Listeria persistence in the
factory may be related to the enhanced acid tolerance of 4b strains.
ORF2110, which encodes a putative serine protease, was identified
as a potentially associated molecular marker and contributes to sur-
vival during environmental stress (Van Der Veen et al., 2008). In
2014, a multistate listeriosis outbreak affecting 35 people across the
United States and one individual in Canada was linked to caramel‐
coated apples ‐a previously unreported vehicle for L. monocytogenes
(Centers for Disease Control and Prevention, 2015). The flesh of these
apples had a pH < 4, and the aw of the caramel was <0.80. However,
Glass et al. (2015) hypothesized that stick insertion could make a film
of apple juice between the caramel and apple surface, creating a niche
that may then become more favorable for Listeria growth than either
component alone.

In 2014, WGS data collected and analyzed by the U.S. CDC by
whole‐genome multilocus sequence typing (wgMLST) identified a
restaurant in Rhode Island as the likely source of a small outbreak
and also linked the establishment to a prior listeriosis case in 2013
(Berkley et al., 2014). Namely, WGS analysis gave adequate resolution
to establish a clear link between the 2014 outbreak cases, 2013 clinical
isolate, and restaurant food (sliced prosciutto). Based on wgMLST
analysis, the prosciutto isolate differed by 0–5 alleles from the 2014
clinical samples as well as by 0–11 alleles from the 2013 clinical iso-
late (Berkley et al., 2014). In another outbreak connected to two Blue
Bell Creamery production facilities, ice cream was likely contaminated
from the plant environment (Centers for Disease Control and
Prevention, 2015). This was both a complex and unusual outbreak
since ten cases from four different states were detected from 2010 to
2015. Additionally, this product which does not support the growth
of L. monocytogenes contained extremely low levels of contamination
(Chen et al., 2016). The first case was identified in one Kansas hospital
over one year (Centers for Disease Control and Prevention, 2015).
Only two of the five patient isolates had the same PFGE pattern, sug-
gesting different sources. However, wgMLST analyses showed that
four of the isolates were closely related not only to each other but also
to ice cream isolates from a production facility in Texas. This led to
sampling in a third facility located in Oklahoma where the L. monocy-
togenes was also found in ice cream products. The cases in Texas and
Arizona were subsequently linked to ice cream manufactured in the
Oklahoma facility. All outbreak‐associated isolates were grouped into
two clusters (delineated as Cluster I and II) which was not possible
through PFGE typing (Centers for Disease Control and Prevention,
2015). In another US outbreak linked to soft cheese in 2015, 30 people
across ten states were sickened and three deaths were reported from
California and Ohio (Centers for Disease Control and Prevention,
2016). In this outbreak, WGS analysis did not only improve cluster
identification that was not possible through PFGE typing but also facil-
itated retroactive inclusion of an earlier undetermined cluster from
2013 into the outbreak and trace back to the contaminated soft cheese
(Centers for Disease Control and Prevention, 2015). Analogously, Pul-
seNet identified an outbreak cluster of L. monocytogenes clinical iso-



Table 2
Selected outbreaks of listeriosis with maximum number of allele differences between outbreak-related isolates (Median)

Year Location No. of Cases/
Deaths

Vehicle of infection Max. No. of allele difference by wgMLST
(Median)*

References

2013 Rhode
Island

4/2 contamination at
restaurant

11 (4) Berkley et al., 2014
2014 5 (3)
2010/

2015
Multistate 10/3 production facility 1 30 (15) Centers for Disease Control and Prevention.,

2015production facility 2 32 (15)
2015 Multistate 30/3 Soft cheese 26 (13) Centers for Disease Control and Prevention.,

2015
2015/

2016
Multistate 16/1 Packaged salads 16 (10)** Self et al., 2016

* Whole-genome multilocus sequence typing.
** Enviromental samples not tested.
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lates associated with packaged salad, indistinguishable by two‐enzyme
PFGE but highly related genetically by WGS (Table 2) (Self et al.,
2016). In general, WGS has enhanced listeriosis outbreak detection
and investigation in at least six key ways which was described in detail
by Jackson, Tarr et al. (2016).

In a report dated April 2020, FDA and CDC investigated a multi-
state outbreak of 36 cases with four deaths traced to L.
monocytogenes‐contaminated enoki mushrooms imported from Korea
(Centers for Disease Control and Prevention, 2020). Other reports
include a 2018 multistate listeriosis outbreak from pork products
and an outbreak linked to hard‐boiled eggs where the environmental
and clinical L. monocytogenes isolates were closely related genetically
(Centers for Disease Control and Prevention, 2018, 2019). Lastly, in
the multistate outbreak reported in October 2020 deli meats were con-
sidered as the source, however, the specific type of deli meat and sup-
plier was never identified (Centers for Disease Control and Prevention,
2020). In all of these outbreaks, WGS was used to assess the degree of
genetic relatedness among clinical isolates and those suspected as a
source of infection. On January 15, 2018, PulseNet officially replaced
PFGE with WGS (Kubota et al., 2019).

In Denmark, WGS was able to link the deaths of seven adults and
one stillborn baby to the consumption of smoked fish (Lassen et al.,
2016). In addition to smoked fish, ready‐to‐eat salmon products were
the likely source of two multicountry outbreaks caused by L. monocy-
togenes ST8 and ST1247 that affected Germany (ST8), France (ST8 and
ST1247), Denmark (ST8 and ST1247), Estonia (ST1247), Finland
(ST1247), and Sweden (ST1247), respectively (European Food Safety
Authority and European Centre for Disease Prevention and Control,
2018, 2019). In late December 2018, the use of epidemiological data
and WGS‐based typing confirmed liver pâté as the likely vehicle in
an outbreak of listeriosis due to L. monocytogenes IVb‐CC4‐ST4‐
Table 3
Selected outbreaks of listeriosis with maximum number of allele differences betwee

Year Location No. of human
isolates

No. of nonhuman
isolates

Max. No. of allele d
cgMLST*

2015/
18

Multicountry 47 25 7

2012/
16

Czech Republic 25 4 7

2013/
18

Germany 77 235 18**

8***

2017/
19

Netherlands,
Belgium

21 9 3

2018/
20

Switzerland 34 6 8

2018 Austria 19 73 1

* Core genome multilocus sequence typing.
** Cluster 1.

*** Cluster 2.
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CT7652, a strain, not previously detected in Austria or elsewhere
(Cabal et al., 2019). Lüth et al. (2020) described a multiclonal L. mono-
cytogenes outbreak linked to meat products from a single producer
which involved 83 cases of invasive listeriosis between 2013 and
2018. One multicountry outbreak in five European countries (Austria,
Denmark, Finland, Sweden, and the United Kingdom) and another in
the Czech Republic, likely associated with frozen corn and turkey
meat, have shown the importance of WGS‐based methods, as the
source of contamination probably would not have been detected using
PFGE or other former typing methods (European Food Safety
Authority and European Centre for Disease Prevention and Control,
2018; Gelbíčová et al., 2018). Using cgMLST, L. monocytogenes isolates
originating from human and nonhuman samples showed up to 1, 3, 7,
8, and 18 allelic differences (Table 3).

All of the above reports indicate that the WGS‐based typing meth-
ods are an important tool for epidemiological investigations and
source tracking in the food industry as well as in discovering new food
vehicles (such as caramel‐coated apples and ice cream). Also, WGS has
improved the ability to distinguish between outbreak‐associated and
sporadic cases, linked sporadic cases to specific food products, animal
sources, and geographical regions, and identified root causes of con-
tamination. As reported by Leclercq et al. (2020), people at a highest
risk of contracting invasive listeriosis are those suffering from an
immunocompromising disease. Using meta‐analysis, the same authors
identified consumption of RTE food categories such as milk, fish, and
meat products as other major risk factors. Another study using WGS
reported that various source attribution models applied on a collection
of human sporadic strains tended to place bovine products, and thus
cheese, as the leading cause of human listeriosis (Møller Nielsen
et al., 2017). This difference could be explained by the fact that there
n human and nonhuman isolates

ifference by References

European Food Safety Authority, 2018

Gelbíčová et al., 2018

Lüth et al., 2020

European Centre for Disease Prevention and Control, European Food
Safety Authority, 2019
Nüesch-Inderbinen et al., 2021

Cabal et al., 2019
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is intraspecies virulence variability which consequently should change
the contribution of that food type (Leclercq et al., 2020).
WGS is being adopted by different competent authorities

In 2019, European Centre for Disease Prevention and Control and
European Food Safety Authority (ECDC‐EFSA) recommended routine
WGS of human and nonhuman L. monocytogenes isolates (European
Centre for Disease Control et al., 2019) to generate a European‐wide
molecular typing database (Møller Nielsen et al., 2017). Four L. mono-
cytogenes species‐specific core genome MLST schemes have been devel-
oped (Chen et al., 2016; Moura et al., 2016; Pightling et al., 2015;
Ruppitsch et al., 2015). A cut‐off of ≤10 alleles (of 1701 alleles, imple-
mented in the SeqSphere+ software, RIDOM, Münster, Germany) or
≤7 alleles (of 1748 alleles, developed at Institut Pasteur and imple-
mented in both BIGSdb‐Listeria and BioNumerics software, Applied
Maths, Sint‐Martens‐Latem, Belgium) has been proposed to distinguish
(separate) strains associated to different outbreaks based on the
cgMLST schemes of Ruppitsch et al. (2015) and Moura et al. (2016),
respectively. The CDC, USDA‐FSIS, and FDA began using WGS as a tool
for improved outbreak identification and investigation in 2013.
Jackson, Tarr et al. (2016) demonstrated the impact of WGS on the
annual incidence of listeriosis with more clusters and outbreaks of
foodborne listeriosis identified and solved after (19 outbreaks) as com-
pared to before the implementation of WGS (two outbreaks). The same
authors suggested that isolates with <10 wgMLST allele difference
should be considered epidemiologically linked, whereas those in the
10–30 range and ˃30 are frequently and occasionally linked.

In 2010, Gilmour et al. (2010) showed that two closely related L.
monocytogenes strains were responsible for a Canadian listeriosis out-
break using high‐throughput genome sequencing. This foodborne out-
break demonstrated the need for enhanced listeriosis surveillance as
well as adequate control of L. monocytogenes in establishments manu-
facturing RTE foods (Currie et al., 2015). In January 2017, WGS was
implemented across Canada as the primary typing tool for routine
sequencing of human Listeria isolates and shortly thereafter, FoodNet
Canada started to work with Public Health Agency of Canada’s (PHAC)
National Microbiology Laboratory (NML) to sequence and match Liste-
ria isolates from both retail meat samples and human isolates (Public
Health Agency of Canada, 2019).

In Australia, the Public Health Laboratory Network has suggested
some recommendations for incorporating WGS in public health micro-
bial surveillance but most laboratories within PHAC do not perform
WGS for routine purposes (Department of Health, 2015).

The setup of open accessible databases allows the comparison and
sharing of data between public health laboratories worldwide and
facilitates as well as international source tracking and multinational
outbreak investigations (Nadon et al., 2017; Schjørring et al., 2017).
It is important that food safety competent authorities jointly cooperate
with national partners in independent sectors, the Food and Agricul-
tural Organization of the United Nation (FAO), World Health Organi-
zation (WHO), and World Organization for Animal Health (OIE) to
promote cross‐sectoral cooperation through the One Health concept
(Food and Agriculture Organization of the United Nations, 2016).
WGS-Based geographical distribution of different CCs of L.
monocytogenes

Work has shown that multilocus sequence typing (MLST) and mul-
tivirulence locus sequence typing (MVLST) can be effective in tracing
the geographic distribution of different CCs and in linking these CCs to
specific listeriosis outbreaks (Yin et al., 2015). Strains belonging to
CC1 are distributed globally, with listeriosis cases caused by serotype
4b strains of CC1 identified in North America, Europe, Africa, Asia,
and Oceania (Yin et al., 2015). Using MLST, CC1 and CC2 (signifi-
6

cantly associated with food) (Lee et al., 2018) were also shown to pre-
dominate except for CC1 in northern Africa (Chenal‐Francisque et al.,
2011). CC3 ranked among the four most common clones in all regions,
whereas CC9 ranked third in Europe and the Western Hemisphere
(Chenal‐Francisque et al., 2011). Using WGS, Zhang et al. (2020)
and Yin et al. (2020) showed that CC8, CC9, and CC87 predominated
in China. Particularly, CC87 was the predominant CC among food-
borne and clinical isolates in China with its high prevalence in raw sea-
food implying this food type as a high risk to human health.
Importantly, hypovirulent ST121 (strongly associated with food and
overrepresented in processing environments in many different Euro-
pean countries) showed a high prevalence among Norwegian clinical
isolates (Fagerlund et al., 2022). This could be explained by the fact
that ingestion of high numbers of hypovirulent L. monocytogenes has
occurred among high‐risk groups. Furthermore, ST21 was found in
vegetable products (Cabal et al., 2019; Maćkiw et al., 2021) and in
Montenegrin dry pork sausage, Prosciutto, and environmental swabs
during 2011 and 2013 (Toledo et al., 2018). CC8, belonging to lineage
II, is globally distributed and the second most frequent in Austria in
2017 (Cabal et al., 2019). However, WGS can further delineate the
geographical distribution within the same CC. For example, CC8 iso-
lates originating from both China and Canada differed but were closely
related to the European CC8 isolates (Italian and Switzerland) (Shi
et al., 2021).
WGS-based investigations of some virulence, stress response, and
antimicrobial resistance genes

The growing volume of WGS data for L. monocytogenes is now
allowing the simultaneous identification of other genetic elements,
i.e., accessory genes that are associated with virulent, stress‐
resistant, and antimicrobial‐resistant phenotypes (Bergholz et al.,
2018). Some clones carry genes in Listeria pathogenicity islands LIPI‐
3 and LIPI‐4 that confer higher virulence (Cotter et al., 2008; Maury
et al., 2016), whereas others may carry genes conferring better envi-
ronmental survival (Chen et al., 2020; Harter et al., 2017; Ryan
et al., 2010). SSI‐1 aids in Listeria survival under suboptimal condi-
tions, including high salt and low pH while SSI‐2 is helpful for survival
under alkaline and oxidative stresses (Gelbíčová et al., 2021).
Wieczorek et al. (2020) identified all SSI‐1 islet genes in lineage II
strains of L. monocytogenes belonging to serotype 1/2a: CC7, CC8,
CC31, and CC155. Besides these four CCs, SSI‐1 is also present in L.
monocytogenes strains belonging to both lineages I and II such as
CC1, CC3, CC5, CC9, CC18, CC31, CC88, CC155, CC191, CC199,
CC204, CC224, CC315, CC321, CC379, CC403, CC489, and CC1041
(Alvarez‐Molina et al., 2021; Centorotola et al., 2021; Chen et al.,
2020; Hingston et al., 2017; Lachtara et al., 2022; Mafuna et al.,
2021; Palaiodimou et al., 2021; Roedel et al., 2019; Toledo et al.,
2018; Wieczorek et al., 2020). Importantly, strains from serotype
1/2b, the majority of which contained SSI‐1 (such as CC3 and CC5),
created the strongest biofilms, while serotype 4b strains, the majority
of which do not contain SSI‐1 (such as CC2 and CC6), formed the
weakest biofilms (Keeney et al., 2018). In a study of L. monocytogenes
strains isolated over 20 years from food‐processing plants, SSI‐1 in CC7
and CC8 strains was associated with long‐term persistence (Knudsen
et al., 2017). Extended survival in food‐processing environments was
also described for ST121 strains of lineage II that carried SSI‐2
(Centorotola et al., 2021; Chen et al., 2020; Guidi et al., 2021; Matle
et al., 2019; Toledo et al., 2018).

Regarding virulence genes, Møller Nielsen et al. (2017) confirmed
by WGS that the LIPI‐3 genes and the gene for the virulence protein
Vip were more likely present in clinical and/or lineage I isolates.
According to Painset et al. (2019) and Tan et al. (2015), virulence sur-
face protein Vip was found across all isolates in lineage I, but only in
70% of lineage II isolates (absent in CC204, CC21, CC31, and CC37,



Table 4
Genetic diversity and presence of stress survival and virulence determinants among L. monocytogenes strains

Key factors L. monocytogenes lineage I L. monocytogenes lineage II L. monocytogenes lineage III and IV

SSI-1 + + nf
SSI-2 + mostly present +

in CC 121
LIPI-1* + + +
inlA/B locus* + harbor a truncated inlA +
LIPI-2 − hypervirulent serovar 4h carries a truncated LIPI-2 −
LIPI-3* + − −
LIPI-4* mostly present in − −

CC4 and CC87
Virulence +++ + +

overrepresented among clinical cases and NFCSs overrepresented among food and food-processing environments mostly identified
in animals

nf – not found.
NFCSs – nonfood contact surfaces.

* Some atypical hemolytic L. innocua strains also harbor LIPI-1, LIPI-3, LIPI-4, and functional inlA genes.
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and 1/43 of CC7 isolates and 3/98 CC8 isolates). More recently, Wang
et al. (2021) confirmed the absence of Vip in CC8 but reported this
gene missing in some other CCs such as CC11 and CC619. The pres-
ence of LIPI‐3 has been proven by WGS in the following CCs of lineage
I: CC1, CC2, CC3, CC4, CC6, CC155, CC191, CC228, and CC288
(Centorotola et al., 2021; Fox et al., 2016; Matle et al., 2020;
Palaiodimou et al., 2021; Roedel et al., 2019; Shi et al., 2021;
Toledo et al., 2018; Wieczorek et al., 2020). LIPI‐3 genes (llsAGHX-
BYDP) are well conserved in ST1 (CC1), while in other STs of lineage
I such as ST3, ST218, and ST288, a number of single‐nucleotide poly-
morphisms have been found (Tavares et al., 2020). In the studies by
Maury et al. (2016) and Hilliard et al. (2018), LIPI‐4 was unique to
CC4 strains of L. monocytogenes and closely linked to hypervirulence
in CNS and maternal‐neonatal listeriosis. In agreement with these find-
ings, Painset et al. (2019) and Roedel et al. (2019) detected LIPI‐4 in
all isolates belonging to CC4 as well as those of CC87. However, the
authors (Painset et al., 2019) highlighted that pathogenicity is a mul-
tifactorial process that is not merely derived from the presence or
absence of virulence genes. Additionally, LIPI‐1 is found in all L. mono-
cytogenes strains whereas LIPI‐2 is present in L. ivanovii and involved in
phagosome disruption (Domínguez‐Bernal et al., 2006). Using WGS, a
truncated LIPI‐2 was detected in hypervirulent serovar 4h strains of L.
monocytogenes belonging to hybrid sublineage II whereas pathogenic-
ity islands LIPI‐3 and LIPI‐4 were absent (Yin et al., 2019) (Table 4).

Regarding other types of resistance, some BC‐tolerant determinants
such as BC efflux pumps qac (above‐mentioned Tn6188) (Moura et al.,
2016; Müller et al., 2014, 2013; Ortiz et al., 2016; Zuber et al., 2019);
bcrABC (Dutta et al., 2013), emrC (Kremer et al., 2017), and emrE
(Kovacevic et al., 2016), have been detected in different L. monocyto-
genes strains, but with the existence of genomic variation within the
identical CCs. Namely, some authors (Chen et al., 2020; Hurley
et al., 2019) did not observe emrC in ST6, despite Kremer et al.
(2017) and Roedel et al. (2019) finding it in ST6. Also, the three‐
gene cassette (bcrABC) was identified using WGS in L. monocytogenes
strains belonging to CC5, CC9, CC88, CC155, CC199, CC204, CC321,
CC1041, but literature data are sometimes inconsistent and not always
related among all isolates of a particular CC within the same and
between different studies (Chen et al., 2020; Cooper et al., 2021;
Fox et al., 2016; Gelbíčová et al., 2021; Palaiodimou et al., 2021;
Roedel et al., 2019; Stoller et al., 2019; Wagner et al., 2020).

Resistance to cadmium is frequently seen in Listeria, with several
major outbreaks of listeriosis involving cadmium‐resistant L. monocy-
togenes isolates (Elhanafi et al., 2010). The same plasmid that carries
bcrABC also harbors the cadmium efflux determinant cadA2, and in
addition, resistance to Cd is also conferred by plasmid‐borne cadA1
and chromosomal cadA3 members of the cadAC efflux system
(Katharios‐Lanwermeyer et al., 2012; Lee et al., 2013). The recently
described cadA4 determinant has been identified in the Arsenic‐
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resistance island LGI2 of L. monocytogenes human strain Scott A and
other L. monocytogenes serotype 4b strains as well as in a few persistent
strains belonging to CC14 and CC204 of lineage II (Fox et al., 2016;
Parsons et al., 2017; Pasquali et al., 2018). Chen et al. (2020) also
identified LGI2 in isolates belonging to CC4, CC1, and CC155. The
presence of cadA4 could be associated with the ability of Listeria to
form biofilms (Parsons et al., 2017).

An earlier study suggested that the comK – prophage in L. monocy-
togenes may represent a rapid adaptation island (RAI) that contributes
to the rapid adaption to different foods and environments as well as
biofilm formation in specific niches within food‐processing facilities
(Verghese et al., 2011). Highly conserved comK – prophage was iden-
tified using WGS in all persistent clones (CC7, CC204, CC101, and
CC155) analyzed by Palma et al. (2020). Also, Fagerlund et al.
(2016) found comK gene in a persistent CC8 strain of L. monocytogenes
recovered from a poultry processing environment.

Antibiotic target‐modifying enzymes (mprF and fosX) also have
been recognized in clonal complexes belonging to lineage I (CC1,
CC2, and CC619) and lineage II (CC8, CC9, CC11, CC21, CC121,
CC155, and CC204), whereas complexes CC8 and CC1 particularly
harbored mprF that affects cell wall charge (Wang et al., 2021;
Wieczorek et al., 2020; Zuber et al., 2019). However, Alvarez‐Molina
et al. (2021) found these two antibiotic‐resistant genes in all CCs of lin-
eage II, some of which coincided with the previous study. Shi et al.
(2021) detected fosX in the following CCs from different regions:
CC1 (Canada), CC3 (China), CC4 (Switzerland), CC6 (Italy), CC7
(Canada and China), CC8 (Italy, Switzerland, China, and Canada),
and CC87 (China) while Roedel et al. (2019) reported the fosfomycin
resistance gene in all tested strains belonging to different lineages.
Importantly, CC6 from the USA did not harbor fosX, suggesting that
intracomplex variation is most likely due to geographical origin. The
presence of fosfomycin intrinsic resistance is epistatically canceled
by virulence determinants present in L. monocytogenes, and this impact
is manifested only during infection when virulent determinants are
triggered within the host. This would help to explain why L. monocy-
togenes may become sensitive to fosfomycin and also support its use
in the treatment of listeriosis (Scortti et al., 2018). It should be empha-
sized that most studies did not analyze all currently known L. monocy-
togenes lineages and genotypic subgroups (CCs). Therefore, a more
holistic experimental approach is needed to better assess intraspecies
variation by WGS (Lakicevic et al., 2022).

In terms of QMRAs, all CCs of L. monocytogenes are not assumed to
be equally pathogenic, thus, risk assessments should be refined to help
feed the modification of current regulations. Hypervirulent CCs,
known as host‐associated clones, better colonize the intestine and
cause listeriosis in healthy hosts representing the largest impact on
public health (Maury et al., 2019). In this regard, WGS data could help
support the ranking of subtypes according to their level of virulence
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and association to food (Lakicevic et al., 2022). Given our better
understanding, foods contaminated with low numbers of hyperviru-
lent strains should not meet food safety requirements. Additionally,
high‐risk populations should avoid certain foods likely to contain high
numbers of L. monocytogenes. Consideration of intraspecies variability
is crucial for fine‐tuning risk assessments and decreasing the incidence
of listeriosis in both humans and animals (Lakicevic et al., 2022).

The utilization of an efficient WGS‐based surveillance system for
human, food, and environmental isolates of L. monocytogenes will aid
in faster implementation of interventions to better protect public
health, inform risk assessment, and facilitate the management of
national and international foodborne outbreaks (Matle et al., 2020;
Ruppitsch et al., 2019). These outbreak investigations rely on close
collaboration between clinicians, epidemiologists, microbiologists,
and bioinformaticians (Cabal et al., 2019; Pietzka et al., 2019). Also,
WGS has now become a critically important tool for tracking and trac-
ing the source and geographic distribution of different clonal com-
plexes as well as targeting known biomarkers associated with
virulence, stress, and antimicrobial resistance. Although WGS has
many benefits, the most important of which is high discriminatory
power, easing the tension surrounding strain typing between food
manufacturers and public health/food agencies remains a major
challenge.
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