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Control theory-based data assimilation for hydraulic

models as a decision support tool for hydropower

systems: sequential, multi-metric tuning of the controllers

Miloš Milašinović, Dušan Prodanović, Budo Zindović, Boban Stojanović

and Nikola Milivojević
ABSTRACT
Increasing renewable energy usage puts an extra pressure on decision-making in river hydropower

systems. Decision support tools are used for near-future forecasting of the water available. Model-

driven forecasting used for river state estimation often provides bad results due to numerous

uncertainties. False inflows and poor initialization are some of the uncertainty sources. To overcome

this, standard data assimilation (DA) techniques (e.g., ensemble Kalman filter) are used, which are

not always applicable in real systems. This paper presents further insight into the novel, tailor-made

model update algorithm based on control theory. According to water-level measurements over the

system, the model is controlled and continuously updated using proportional–integrative–derivative

(PID) controller(s). Implementation of the PID controllers requires the controllers’ parameters

estimation (tuning). This research deals with this task by presenting sequential, multi-metric

procedure, applicable for controllers’ initial tuning. The proposed tuning method is tested on the Iron

Gate hydropower system in Serbia, showing satisfying results.

Key words | hydraulic model update, model-driven forecasting, near future forecasting, PID

controller, PID controllers’ tuning
HIGHLIGHTS

• Uncertainty of the boundary and initial conditions affects model-driven forecasting.

• Data Assimilation is used to overcome these problems.

• Research presents potential of using novel, tailor-made, PID controllers-based data assimilation

method for river hydraulic models update.

• Method could be used as a decision-support tool for hydropower systems control.

• Sequential, multi-metric tuning procedure has been introduced.
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INTRODUCTION
The global tendency for reduction of greenhouse gas

emissions switches focus from fossil to renewable energy
sources. This tendency puts hydropower systems, as the

most important manageable renewable source, in the first

place, considering its availability and cost-effectiveness (Eur-

electric ). Hydropower production depends on

numerous dynamically changing factors, like extreme hydro-

logical events (floods and droughts), environmental

constraints, price fluctuation on energy markets, and
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conflicting goals of the stakeholders in charge. To use the

water optimally, engineers and operators in charge of

hydropower systems require different decision support

tools (Ehteram et al. ). In many cases, these tools must

provide forecasts of the hydrological data (water levels and

river flows) on a daily basis. Hydrological forecasting is a

challenging task, addressed by numerous researchers (e.g.,

Wu & Chau ; Taormina & Chau ; Fu et al. ).

For the purpose of forecasting, monitoring systems and

physically based models are used in model-driven forecast-

ing procedures.

The quality of model-driven forecast directly depends on

boundary and initial conditions. However, they are often

affected by numerous sources of uncertainty (Bozzi et al.

; Ocio et al. ). These problems eventually lead

to poor forecast results and inadequate hydropower

system control operations. To overcome these problems,

data assimilation (DA) methods are widely used for improv-

ing hydrological-hydraulic forecasting (Vrugt et al. ).

Various DA methods are applied in hydrological-

hydraulic modeling. One of the widely used methods is

ensemble Kalman filter (EnKF) (Evensen , ). This

method is often used for improved river flood forecasting

(Madsen et al. ; Neal et al. ; Li et al. ;

Barthélémy et al. ) but also for forecasting flows and

overflows in urban drainage systems (Lund et al. ). In

many hydrological-hydraulic applications of DA, measured

water levels from monitoring systems are used to update

the model (Romanowicz et al. ; Hostache et al. ;

Jean-Baptiste et al. ; Rakovec et al. ). Some authors

have successfully used streamflow observations too (Thirel

et al. ; Dumedah & Coulibaly 2014; Randrianasolo

et al. ; Sun et al. ). In more recent researches,

there has been a tendency to use remotely sensed hydrologi-

cal data, such as satellite images (Matgen et al. ;

Giustarini et al. ; Yoon et al. ; García-Pintado et al.

; Andreadis & Schumann ; Garambois et al. )

or even crowdsourced data (Mazzoleni et al. a, b,

; Annis & Nardi ).

All these studies show high applicability of the standard

DA methods, such as EnKF, in hydrological-hydraulic mod-

eling. On the other hand, in most real-world applications,

EnKF, and similar DA methods, struggle to perform within

a reasonable time frame (Madsen & Skotner ), which
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makes them not favored by engineers and operators in

charge of water systems. Additionally, mathematical

apparatus, which is relatively complex, means these

methods avoided in real-world applications. Owing to the

necessity for improved water resources management and

control, many decision support tools are required, especially

for improved short-term forecasting. This enables improved

(near) real-time operations in various water resources

(Schwanenberg et al. ; Ahmad & Hossain ). This

also makes DA an important decision support tool. There-

fore, problems with real-world applications of standard

DA methods are under the spotlight, creating a challenging

task. To overcome these problems, researchers are searching

for simplified and fast DA methods. Many of them are trying

to develop tailor-made assimilation techniques, suitable

for solving some specific problems. Madsen & Skotner

() developed a cost-effective assimilation method for

river models. This method uses the simplified version of

Kalman filtering, which certainly provides reduction of com-

putational time, but requires the predefinition of the

parameters used in a pre-processing phase. All these appli-

cations of ensemble-based DA methods or its derivatives

use the direct approach for model updating. In hydraulic

models, this means that water levels (stages) are directly

corrected according to measured values. Sometimes, this

procedure can cause ‘shocks’ in the model, disrupting the

continuity equation (mass balance). Therefore, some

researchers are trying to use a different and indirect model

updating procedure. For example, Fava et al. () pre-

sented a fast DA methodology for improved flood

prediction by hydrological models in urbanized areas,

using the rainfall input corrections instead of direct water

level update. The methodology for indirect water level

update in urban drainage systems, presented by Hansen

et al. (), uses an approach of adding/subtracting correc-

tion flow to the system in the junctions where observations

are available. This approach, with all details in the Method-

ology, has narrowed the scope of its application.

The general approach of the indirect model update pro-

cedure (Hansen et al. ) was the basis for the

introduction of DA methodology for (near) real-time river

model update where correction flows are calculated using

control theory (Rosić et al. a, b; Milašinović et al.

). Development of this novel, control theory-based DA



3 M. Milašinović et al. | Control theory-based data assimilation for hydraulic models Journal of Hydroinformatics | in press | 2021

Uncorrected Proof

Downloaded from http
by guest
on 24 February 2021
method and EnKF benchmark test was presented and veri-

fied by Milašinović et al. (). The study has proved the

applicability of proportional–integrative–derivative (PID)

controllers as a DA tool. Due to its potential as a time-effi-

cient method, compared to the widely used EnKF method,

it can be used as decision support tool for near real-time

control of river hydropower systems. However, the study

underlined the need of further investigation in the field of

controllers’ tuning.

Assigning the values to the controllers’ parameters

(tuning of the controllers) is one of the most important

steps in any application of the PID controllers. Previous

research used trial-and-error tuning rather than any systema-

tical tuning procedure. For further and more general

applications of this novel DA method, proper controllers’

tuning procedure has to be proposed. Therefore, this research

addresses tuning of the controllers by presenting sequential

and heuristic multi-metric tuning procedure. The goal is not

to determine a global optimal solution on the controllers’ par-

ameters, but to present a simple, engineering procedure to

estimate the initial values and possible range of the control-

lers’ parameters preserving the model’s stability. The

presented procedure shows satisfying results, and thus can

be considered for initial tuning of the controllers.
MATERIALS AND METHODS

Overview of the methodology

Standard DA procedure (e.g., EnKF) corrects the state vari-

able (e.g., water level) based on observation data, a model’s

sensitivity on state variables and compared model uncer-

tainty and observation uncertainty. When model

uncertainty is bigger than observation uncertainty, DA pro-

cedure puts more trust in observations, correcting the

model output towards observed data, and vice versa. This

approach is derived using the assumption that there is no

dominant source of uncertainty. On the other hand, in

many engineering problems, some simplified approaches

can, or must be used.

Control theory-based DA is developed using the assump-

tion that system state observations (water levels) are with

much lower uncertainty than models and can be used for
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
direct, deterministic model update (Hansen et al. ).

Therefore, comparison of the model and observation uncer-

tainty is skipped, which allows significant speed-up of the

assimilation process (Milašinović et al. ). The second

used assumption is that dominant sources of the model

uncertainty are boundary and initial conditions, while

model parameters are properly determined during model

calibration. In most cases, inflow data are not directly

measured, have high uncertainty, especially during flood

events, and are with poor time resolution. Additionally,

there is lack of the input data (e.g., rainfall) for large water

systems due to inability to implement monitoring stations,

with good spatial resolution, across an entire catchment

area. Therefore, initial and boundary conditions are

inadequate and could be blamed for discrepancy between

calculated and observed water levels. Eventually, these pro-

blems lead to a bad estimation of reservoir state and

hydropower system operation rules.

Considering these two assumptions, a novel control

theory-based DA with simplified model update procedure

is developed. This DA procedure treats the problem (water

level discrepancy) as the lack or excess of water amount in

the model. Hence, the model update procedure is operated

by adding or subtracting the water from the model at the

locations where observations are available. This reduces

the water level discrepancies, improving the initial con-

ditions for future forecasting. The process of adding/

subtracting water from the model is controlled by PID con-

trollers (hence it is named control theory-based DA).

Figure 1 represents the general model update procedure in

control theory-based DA.
PID controllers as data assimilation tool for hydraulic

model

Model-driven forecasting requires physically based

models. In this paper, diffusion wave hydraulic model is

used, as proposed by Milašinović et al. (, ). This

model is based on one-dimensional (1D) Saint-Venant’s

Equations (1) and (2). Diffusion wave model for 1D

open channels (DiffW1D) uses a simplified dynamic

equation (Equations (2)) derived from the full Saint-

Venant’s equations by neglecting convective acceleration



Figure 1 | Algorithm for control theory-based DA procedure.
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(second term in Equation (2)):
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Here, x is space coordinate, t time, A cross-sectional

area, Q discharge, q lateral inflow, Z local water surface

elevation (water level), g acceleration due to gravity, R

hydraulic radius calculated as the ratio between cross-sec-

tional area and wetted perimeter, β velocity distribution

coefficient, and n is Manning’s roughness, calculated

according to Costabile & Macchione (2012). Model
Figure 2 | (a) Model domain discretization and (b) numerical scheme using DiffW1D model (M
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domain discretization is presented in Figure 2(a). Numerical

DiffW1D model uses a staggered numerical scheme where

water levels and flows are calculated in alternating cross sec-

tions (Abbot & Basco 1989), as presented in Figure 2(b).

Numerical model of the diffusion wave is given by

Equations (3) and (4):
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(4)

where index i represents spatial location (i-th cross section),

B is the top width of the cross section (water surface width),

t in superscript denotes current time, Δx spatial resolution,

and Δt is temporal resolution.

Procedure for adding/subtracting water to/from the

model is based on adding/subtracting correction flows, in

a form of lateral inflow, at the location where observations

are available (assimilation point). Correction flows are cal-

culated based on the difference between observed water

levels and simulated water levels (error). Conversion of the

errors to correction flows is conducted using the PID con-

trollers. Correction flows are implemented as (fictive)

lateral inflow elements in the continuity equation (Equation

(3)) of the hydraulic model. A new form of continuity
ilašinović et al. 2020).
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equation is presented by Equation (5).

ZtþΔt
i ¼ Zt

i �
Δt
Bt

i
�Q

t
iþ1 �Qt

i�1

2Δx
þ Δt
Bt

i

Qt
corr

2Δx
(5)

where Qcorr represents correction flow that reduces the

water level discrepancy between observations and model.

It is calculated using the PID controller’s theory.

PID controller is a control loop feedback mechanism,

where input in the next step is a function of the previous

output (Astrom & Hagglund ). This mechanism is

often used for real-time-control (RTC) of different process

(e.g., RTC of hydraulic structures in urban drainage systems

(Schütze et al. ), RTC of irrigation canals (Bonet et al.

), or RTC in water resources (Schwanenberg et al.

)). In this paper, the mechanism is used for on the fly

hydraulic model update.

The PID controller’s input is named as error e(t), which

is calculated as the difference between current value of the

process variable (simulated water level�Zmodel) and the set-

point of the variable (observed water level�Zobs), as stated

in Equation (6). In many real-world problems the simulation

time step Δt is much shorter than the observation time step

Δtobs. Therefore, in the period between two existing obser-

vations, the ‘observed’ water level Z*obs is calculated using

linear interpolation. It can be assumed that the accuracy

of interpolated ‘observed’ level decreases as the time interval

from the last observation increases. To reduce the influence
Figure 3 | Error attenuation factor (periodical, discontinuous, function) as a measure of uncerta

step Δt and observation time step Δtobs) (Milašinović et al. 2020).

://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
of the interpolated water levels Z*obs, multiplier C, named as

attenuation factor (Figure 3), is used. In Equation (7),

tprev_obs is time of the previously available observation, t is

current simulation time, tobs is observation time, and Δtobs
is observation time step. Attenuation factor in Equation

(7), will gradually turn off the PID controller (Figure 3) in

periods between two measurements. This means that, as

the model progress forward in time, in periods without

measurements, smaller weight is given to the errors calcu-

lated using interpolated water levels.

The PID controller tends to reduce error using the con-

trol variable. The control variable used to reduce this error

is lateral inflow Qcorr(t) presented by Equation (8).

e(t) ¼ [Z�
obs(t)� Zmodel(t)] � C (6)

C ¼
1 t ¼ tobs

Δtobs
tþ Δtobs � t prev obs

t ≠ tobs

8<
: (7)

Qcorr(t) ¼ Qt
corr ¼ Kp � e(t)þKi �

ðt
t0
e(t)dtþKd

de
dt

(8)

PID parameters are: Kp – proportional gain factor used

to multiply the current error value, Ki – integrative gain

factor used to add the influence of error history, and Kd –

derivative gain factor used to adapt control to current

trends in error change. Proportional gain produces an

output based only on the current value of the error. High
inty (minimal value of the attenuation factor depends on specific values of simulation time
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values of Kp cause big variations in controllers’ output that

can make the system unstable (extremely big water level

oscillations causing the occurrence of physically impossible

values of water depths). Low values (towards zero) of Kp

avoid problems of an unstable system, but time needed for

reaching the setpoint increases and, practically, makes

system unable to reach the goal. Therefore, Ki, along with

error integral, forms integrative gain, which is used to collect

error history and its duration, to minimize them over time.

This gain can significantly reduce time needed for reaching

the setpoint. In some cases, in highly dynamic systems with

rapid changes, the derivative component is included to esti-

mate the error trend (what will be the error in the near

future). However, the derivative component is sensitive in

systems with high measurement noise and can enhance

the controllers’ instability. Hence, proper tuning of the

PID controllers’ gain factors must be provided. Finding opti-

mal values of the controllers’ parameters is a challenging

task. In common applications of the PID controllers this is

often conducted using some of the simple, heuristic methods

(e.g., Ziegler & Nichols ; Skogestad ). However,

these tuning methods, systematically presented by Ang

et al. (), are mostly physical systems-oriented (in other

words, they are proven for automated control of the real

physical systems). Recommendations in these methods are

derived from the specific field of applications and are unreli-

able when the PID controllers’ theory is used in hydraulic

modeling. Additionally, they are single metric or just visually

based rather than multi-metric based.

Rather than using simple, heuristic tuning methods, this

procedure can be done by optimization algorithms (Ou &

Lin ; Altinten et al. ; Kim et al. ; Solihin

et al. ; dos Santos Coelho ; Wang & Wei ;

Chiha et al. 2012). The main problem in optimization algor-

ithm usage (e.g., genetic algorithm) is the difficulty to find

the global optimal solution (in reasonable time) when the

number of variables increases (multiple controllers). The sol-

ution depends on the initial assumption on the variables’

values (Deng et al. ). To prevent this problem, appropri-

ate initial values of the controllers’ parameters (Kp, Ki, and

Kd) should be estimated. Therefore, simple tuning pro-

cedures are necessary to complete this step.

This paper presents sequential, heuristic, multi-metric

tuning procedure for initial tuning of the controllers. It is a
om http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
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simple tuning procedure and convenient to start with.

Hence, it should not be omitted. Further, fine tuning can

be performed using the results of sequential multi-metric

procedure as an initial point. Procedure is based on gradual

increase of the gain factors of each component indepen-

dently in three phases. Phase 1 is used to estimate the

value of the proportional gain only (P controller) that pro-

vides fastest approaching to the prescribed level, with

minimal overshooting or oscillations. In Phase 2, integrative

gain is coupled (PI controller) with the value of proportional

gain factor Kp which produced the best assimilation results

according to assimilation quality indicators. In Phase 3,

derivative gain is added (PID controller) to the values of

Kp and Ki which showed the best results. Kd is increased

to analyze if there is any improvement by adding the deriva-

tive gain in the controllers. Phases have to be performed in

this order, because application of derivative gain as the first

or coupling it first with proportional gain (PD controller) is

not recommended (suggested by many researchers, e.g.,

Stanbury et al. ()). Additionally, almost 80% of PID con-

trollers’ applications have the derivative part switched off

while the other 20% use it coupled with proportional and

integrative gains (Ang et al. ), because inappropriate

tuning of Kd can affect the system’s stability. This is a solid

reason to use the proposed phases in sequential tuning

procedure.

Indicators for DA performance assessment

To assess the effect of the multi-metric tuning procedure,

DA performance assessment (DA quality) indicators must

be established. The aim of the PID controllers’ tuning is

to minimize difference between process value and the set-

point, oscillations in process error and settling time. For

the application of PID controllers as a DA tool, four indi-

cators are used in this paper: root mean square error

RMSE (to represent difference between process value and

the setpoint), amplitude of the process error maxError (to

represent the oscillations), assimilation time ratio Assim-

TRatio (to represent the settling time), and total

correction volume CorrVol, which is method-specific indi-

cator, a product of PID controller-based assimilation (it

represents the intensity of the controllers’ ‘intervention’

into the hydraulic model).
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Root mean square error

Usage of the root mean square error RMSE as DA quality

indicator depends on the number of locations where direct

model update is conducted (number of assimilation

points). In this research, mean value of RMSE indicators

for all observation locations is used (Equation (9)).

RMSE ¼ 1
M

XM
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

(Zj,obs � Zj,sim)
2

vuut (9)

where Zj,obs represents sample from the observed water level

time series, Zj,sim represents sample from the simulated

water level time series, N is the number of time samples in

time series, and M is the number of locations used for calcu-

lation of RMSE indicator.

The lower bound of this metric is 0, which represents the

ideal case showing the excellent assimilation performance.

Amplitude of the process error

During the assimilation process, the model is updated

towards the measured values, but big oscillations of simu-

lated water level are present, especially at the beginning of

the assimilation process. Therefore, amplitude of water

level oscillations (error amplitude) maxError is used to esti-

mate DA quality (Equation (10)). Since there are several

observation locations where DA performance has to be esti-

mated, mean value of error amplitudes is used. The lower

bound of this metric is 0, and DA performance is better

when maxError tends to this value.

maxError ¼ 1
M

XM
i¼1

max(jeij) (10)

where ei is error time series for the i-th observation location

and M is the number of those locations.

Total correction volume

Total correction volume CorrVol represents the total volume

of water added or subtracted by controllers at the assimila-

tion points. This indicator is method-specific, applicable
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
only in PID controller-based assimilation. It represents the

estimation of controllers’ intervention into the model.

When confidence in boundary conditions is high, the total

correction volume tends to be zero. In this research, it is

evaluated as a sum of total correction volumes added/sub-

tracted from the model at all assimilation points (Equation

(11)). This indicator also has the lower boundary set at 0.

CorrVol ¼
XMA

i¼1

ðtsim
0

Qcorr,i(t)dt
����

���� (11)

where MA is the number of assimilation points, tsim is the

time period of the simulation when assimilation is per-

formed, and Qcorr is the correction flow.
Assimilation time ratio

Assimilation time ratio AssimTRatio [/] represents the ratio

of period in which process error exceeds the threshold to the

total simulation time tsim. When AssimTRatio ratio has

value 0, it shows excellent DA performance (best value),

while value 1 shows poor DA performance (worst value),

where assimilation fails to correct the model towards

measurements. To evaluate the AssimTRatio, error time

series has to be transformed into the error duration curve

(Figure 4). The threshold used in this paper is set to

0.05 m. As there are several observation locations where

assimilation quality has to be estimated, AssimTRatio is cal-

culated as the average of assimilation times for all locations.
Test case

The presented methodology is developed for the purpose of

near real-time control of transboundary hydropower system

Iron Gate 1 on the Danube river shared between Serbia and

Romania. Everyday operations of the hydropower plant

(HPP) require short-term forecasting of water levels (and

river flows) in the vicinity of HPP. For improved forecasting

(improved initial conditions) DA is required.

The test case of the hydropower system consists of

hydropower plant Iron Gate 1 (IG1) and a 170 km-long

upstream Danube river section (Figure 5), the lower half of

the total reservoir’s length. The domain is discretized by



Figure 5 | Iron Gate hydropower system with 170 km-long Danube river section coupled with PID controllers for continuous model update.

Figure 4 | Transformation of the error time series into the error duration curve for determining the AssimTRatio indicator.
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189 cross sections, with the average distance of 900 m

between. The river model is developed using the DiffW1D

model with one upstream inflow, neglecting all tributaries.

Tributaries are neglected due to lack of data, further sup-

porting the assumption that dominant uncertainty source

in the model is the inflow data. Six observation locations

are available across the river section: Nera (132 km from

IG1), Golubac (100 km from IG1), Dobra (74 km from

IG1), D. Milanovac (47 km from IG1), Dubova (25.7 km

from IG1), and Orsova (10.3 km from IG1). The first five

locations are used as assimilation points (PID controllers

are set at these locations), while Orsova is used as a vali-

dation point. The test case used for the analysis of the

proposed DA methodology contains real river geometry.

Synthetic test case scenario is used for analysis in this

paper. Observed water levels at six locations are generated
om http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
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using the ‘true’ inflow hydrograph (black line in Figure 6).

The total inflow volume for a given 7 days is 2.163 ×

109m3. Then, the ‘true’ inflow is altered and changed to

‘uncertain’ inflow, or model driving inflow (dashed line

with black circles in Figure 6). Difference between the

‘true’ and the ‘uncertain’ inflow is a sum of two sinusoidal

functions with the amplitude of 1,000 m3/s and frequencies

of π/(10,000 s) and π/(5,000 s), which are arbitrarily

selected. The scenario is adopted to emulate extreme con-

ditions where model driving inflow (‘uncertain’ inflow)

significantly differs from the ‘true’ inflow (in this study

used to emulate ‘true’ water levels). This also represents

the case of sampling the inflow data on poor timescale,

which results in big discrepancies. It is also used to show

the potential of using PID controllers as a DA method in a

more dynamic environment (note that ‘true’ inflow is more



Figure 6 | Boundary conditions: true inflow, uncertain upstream inflow hydrograph (model driving inflow), downstream outflow hydrograph, and downstream stage hydrograph.
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dynamic than model driving inflow). The altered inflow is

set as the upstream boundary, with total volume of

2.268 × 109, with average ‘uncertain’ inflow which is larger

than ‘true’ inflow for 104.7 × 106 m3/s. At the downstream

boundary, the measured outflow and stage (dashed line

and dashed line with square markers in Figure 6) are used.

Stage hydrograph is used to generate the true state, while

outflow hydrograph is used as model driver. Water level

observations are obtained with Δtobs¼1 h, while computation

time step Δt is set to 60 s, simulating real-world conditions

where computation time step is, in most cases, smaller

than observation time step. Total simulation time of the

test case scenario is tsim¼7 days.

Stage (water level) hydrograph or stage-discharge curve

(rating curve) should be implemented as the downstream

boundary condition for proper open channel hydraulic mod-

eling. But, in most real-world cases, HPP operations are

controlled by the discharge (when reservoir exists), not

water level (stage) and stage-discharge curve is not easy to

determine. Therefore, the outflow hydrograph is used as

the downstream boundary condition. As can be seen in

Figure 6, the outflow hydrograph reflects the daily power

production in real-world HPP operations. Thus, this
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
supports the assumption that boundary conditions create,

dominantly, the model’s uncertainty.

To analyze the influence of PID controllers’ gains, sets

of parameter values are used. Parameters are increased

step-by-step by the order of magnitude. A set of identical

controllers with the same values of parameters (Kp, Ki,

and Kd) are used for all assimilation points. Tuning each

controller separately requires thorough, independent, inves-

tigation, including multi-objective optimization, which will

be the subject of a forthcoming research. This paper is

focused on determining the initial values and bounds of

these parameters, and good to start with.

Analysis is carried out in three phases. In Phase 1, only

proportional gain is analyzed (integrative and derivative are

switched off), by changing the Kp using the values of 10n,

where n is integer from �3 � n � 3. In Phase 2, Kp is fixed

to the value that gave the best DA quality indicators in

Phase 1, while Ki is changed using the values of 10n

(�3 � n � 3) and derivative gain is switched off. In the

last, Phase 3, the Kd is changed using the values of 10n

(�3 � n � 4), Kp is fixed to the same value as used in

Phase 2 and Ki is fixed to the value that gave the best results

in Phase 2. The set of parameters’ values could be done with
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more samples and it would probably show an even better

solution. The goal of the presented sequential tuning pro-

cedure is not to determine the global optimal solution on

the controllers’ parameters but to estimate the initial

values and bounds preserving the model’s stability. Hence,

the adopted values are good enough to present the tuning

method potential.
RESULTS AND DISCUSSION

The base case scenario is the model’s free run, without DA.

Figure 7 shows the water levels obtained using the model in

free run mode. The water levels obtained show the model’s

inability to reach the true state, which is most notable at the

stations closer to the upstream boundary (Nera and Golu-

bac). This originates from the bad boundary conditions

being used and the fact that these stations are more affected

by the upstream boundary condition. Stations closer to the

downstream boundary are dominantly under the influence

of the hydropower plant which practically mitigates all

upstream model driving due to big reservoir volume. Using
Figure 7 | Comparison of the observed water levels and water levels obtained by the model f
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such a model for HPP control operations will lead to numer-

ous problems. Hence, DA is required.

Initial tuning analyzed in this paper starts with Phase 1,

where only proportional gain is used. Figure 8 shows the

changes in DA quality indicators by increasing the Kp.

Results are presented for five assimilation points (black

bars) and one validation point (Orsova, gray bars). Please

note that CorrVol is zero at validation point since there is

no controller here to add/subtract the correction flow.

RMSE values are pretty much the same for the values of

Kp smaller than 100. RMSE values vary around 0.3 m for

assimilation points and around 0.37 m for validation point.

The value of maxError has the same trend, varying around

0.63 m for assimilation points and 0.77 m for validation

point. Setting the value of Kp at 100, RMSE and maxError

jump to values around 2.5 and 5, respectively, while increas-

ing the Kp to 1,000 makes the model unstable. This means

that the controller’s operations cause the model to become

first unstable (large water levels oscillations) and then to

produce physically impossible solutions. In such situations,

RMSE and maxError are assigned a value of 100, reflecting

the poor performance of DA. Also, the CorrVol presented
ree run simulation.



Figure 8 | Change of the DA quality indicators by increasing the Kp (Ki¼ 0, Kd¼ 0).
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in Figure 8 increases for a few orders of magnitude when Kp

is increased to 1,000.

Small values of the RMSE and maxError for the values

of Kp below 100 could lead to the wrong conclusion that

values around 10 can produce satisfying results. Therefore,

AssimTRatio has also to be analyzed. This indicator shows

that process error (water level difference) is not below the

threshold set at 0.05 m for more than 97% of simulation

time. This indicates that using the proportional gain only

is not a good option for the application of the controllers

in the hydraulic model. Therefore, Phase 2 is required.

In Phase 2, integrative gain is switched on. Values of Ki

are changed between 10�3 and 103. Integrative gain is

coupled with the proportional gain factor value of Kp¼ 10.

Figure 9 shows changes of DA quality indicators with the

increase of Ki. RMSE and maxError values are better than

using the proportional gain only. RMSE is less than 0.25

for assimilation points and less than 0.3 for the validation

point, for listed Ki values below 100. In these cases, maxEr-

ror is below 0.5 for assimilation points and below 0.6 for the

validation point. Ki set to 10 gives by far the best results for

the RMSE and maxError. RMSE is 0.02 m for the
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
assimilation points, and 0.07 m for the validation point.

Value of maxError is 0.074 m for assimilation points and

0.187 m for the validation point. Further increase of Ki

makes the model unstable (in Figure 8 values of RMSE

and maxError are limited to 100). Total correction volume

increases by increasing Ki, but not significantly as was the

case when only Kp was used. Increasing Ki shows the

increase in CorrVol but with a tendency to reach the maxi-

mum of the total correction volume. When AssimTRatio is

analyzed, by far the best results are obtained when Ki is

set to 10. In this case, AssimTRatio is 0.075 for assimilation

points, which means that process error has the value over

the threshold for only 7.5% of the simulation time. This is

an extreme improvement from Phase 1. This value is 0.48

for the validation point, which is bigger than for the assim-

ilation points, yet much better than in Phase 1.

Even though Phase 2 shows significant improvement in

DA quality indicators, Phase 3 is used to determine whether

the addition of derivative gain could give some further

improvement. Factor Kd is included with increasing values

from 10�3 to 104 (Figure 10), coupled with constant values

of Kp¼ 10 and Ki¼ 10. Increasing the value of Kd up to



Figure 9 | Change of DA quality indicators by increasing Ki (Kp¼ 10, Kd¼ 0).

Figure 10 | Change of DA quality indicators by increasing Kd (Kp¼ 10, Ki¼ 10).
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1,000 shows no improvement in the DA quality indicators.

All DA performance indicators have the same values as

obtained with the best solution from Phase 2. This can be

explained by the fact that properly tuned PI controllers

reduce process error to values near 0, so derivatives de/dt

in Equation (8) have extremely low values. Multiplication

of these values by Kd gives low addition in correction flow

thus, practically, having no impact on the assimilation pro-

cess. Effects of the derivative gain can be seen only if Kd

has extreme values, such as 10,000. It increases the impact

to the correction flow. In this case study, usage of the deriva-

tive gain creates problems, because the model becomes too

sensitive to derivative gain output, resulting in the model’s

instability. This can be explained by the fact that derivative

gain output (and total correction flow accordingly) creates

highly dynamic input to the model (extremely different

from the natural events). These events cannot be propagated

by the model, which creates the model’s instability. This is

not unexpected considering other applications of the PID

controllers (80% of the applications omit the derivative

gain). Therefore, the multi-metric tuning procedure used in

this case study shows that adding the derivative gain gives

no benefits. This outcome is case specific, and it should

not be taken for granted. Instead, the main contribution of
Figure 11 | Comparison of the observed water levels and water levels obtained by the mode

://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
the sequential tuning procedure is showing the potential to

narrow the search space for optimal controllers’ parameters.

It could improve fine tuning of the controllers using the

multi-objective optimization, which will be analyzed in a

forthcoming research.

Figure 11 shows the levels of the model simulation

coupled with the PI controllers, where proportional and

integrative gains’ factors, Kp and Ki, are set to 10. In this

case, the model will reach the true state in the first half of

a day, which gives the improved water level state at the

end of the 7-th day needed for the short-term forecasting.

Figure 12 shows the correction flow hydrographs for all

five assimilation points. When correction flow hydrograph

at assimilation point 1 (Nera) is integrated to estimate the

correction volume at this point, the total volume of

132.1 × 106 m3 is obtained. Total volume difference between

true inflow hydrograph (Figure 6) and the one used to drive

the model in the assimilation process is 104.7 × 106 m3. This

shows that controller(s) located near the uncertain inflow

can reconstruct the ‘missing’ inflows (flow hydrograph –

Nera in Figure 12). The rest of the total correction volume

CorrVol is the result of usage of inappropriate downstream

boundary condition in simulation mode (which happens

often). Controllers react to water level difference between
l coupled with PI controller (Kp¼ 10, Ki¼ 10).



Figure 12 | Correction flows added (positive values) and subtracted (negative values) at five assimilation points (Nera, Golubac, Dobra, Donji Milanovac, and Dubova) by PI controllers

(Kp¼ 10, Ki¼ 10) and flow hydrograph downstream of Nera (true inflow corrected by Nera PI controller).
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true and simulated state even when simulated levels are the

product of bad boundary condition. This is even more vis-

ible at downstream controllers. They are dominantly under

the influence of the hydropower plant operations which

makes them more sensitive to the faults in downstream

boundary condition. Correction volumes for each station

separately (Figure 12) show significant difference between

Dubova station and the others. At this station the controller

subtracted 829.8 × 106 m3, which is enormous compared to

other stations. This indicates that downstream boundary

condition strongly affects the results. Therefore, PID con-

trollers have the potential to be used for detection of

problems which are the result of bad boundary conditions

applied, beside estimated uncertain inflows. This can be a

very significant decision support tool, and it will be analyzed

in a future research.

Figure 12 also shows that some controllers supply the

high correction flows at the beginning of the assimilation.

Since the simulation model needs some time to respond to

those corrections, during this short period the integrative

part will accumulate the error causing water flow to over-

shoot. To overcome this problem at the beginning of the

assimilation, hot start for integral error should be adopted
om http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
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as a common practice. This would increase the impact of

the integrative gain from the assimilation start.
CONCLUSIONS

This paper presents further insight into the application of

control theory-based data assimilation for 1D river hydraulic

models used as decision support tool for hydropower pro-

duction control. PID controllers are applied as a DA tool,

in a form of simple (fictive) lateral inflow elements that

reduce the water level difference between the model and

the observations. The methodology is applied on the real-

world case study, HPP Iron Gate with a 170 km-long

Danube section with a synthetic test case scenario. The gen-

eral goal of this analysis is to show the capability of PID

controllers to properly update the model state and produce

the improved initial conditions for the forecasting. Sequen-

tial, multi-metric tuning procedure for the controllers is

introduced. It is performed in three phases, considering

the DA quality indicators: RMSE, maxError, CorrVol, and

AssimTRatio. In Phase 1, controllers are used in a form of

P controllers. Multi-metric assessment of the tuning shows
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that that this type of controller is not able to produce satisfy-

ing results based on all indicators. In Phase 2, controllers are

upgraded by adding the integrative gain (PI controllers).

This upgrade produced highly improved results of model

updating, based on all indicators. It also showed that

tuning of the controllers’ parameters must be carefully car-

ried out. Inadequate tuning of the controllers can result in

model instability. In Phase 3, PI controllers are upgraded

to the full form of PID controllers by adding the derivative

gain. Multi-metric assessment can show the necessity of

adding the derivative gain. If the metrics show no improve-

ment in Phase 3, derivative gain can be switched off.

According to the results obtained in this research, the fol-

lowing specific conclusions can be derived:
• PID controllers can be applied as a DA tool for 1D open

channel hydraulic model update.

• Usage of only one DA quality indicator, such as RMSE,

cannot guarantee the proper implementation (tuning) of

the controllers.

• Other DA quality indicators should be used as well,

especially AssimTRatio, in combination with RMSE.

• Multi-metric assessment of controllers’ parameters, used

in this research, cannot result in the global optimum

(Kp, Ki, and Kd). This procedure provides parameters’

values good to start with, and this procedure should not

be omitted, because it can significantly narrow the

search space for finding the global optimal solution.

• More precise tuning (fine tuning) should be conducted

using the multi-objective optimization algorithms.

The presented sequential tuning procedure should be

used to determine initial values of the controllers’

parameters.
Based on the results and previous specific conclusions,

control theory-based DA justifies its application in large-

scale open channel hydraulic models. However, full appli-

cation of this methodology requires further testing on the

influence of numerical model complexity on the system’s

performance and procedure for fine tuning of the controllers

(each controller individually and all parameters simul-

taneously), which will be the subject of a forthcoming

research.
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.078/850668/jh2021078.pdf
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