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ABSTRACT

In this paper, the use of a novel genetic fuzzy rule-based system (FRBS) is proposed for assessing the resilience of a water resources system

to hazards. The proposed software framework generates a set of highly interpretable rules that transparently represent the causal relation-

ships of hazardous events, their timings, and intensities that can lead to the system’s failure. This is achieved automatically through an

evolutionary learning procedure that is applied to the data acquired from system dynamics (SD) and hazard simulations. The proposed frame-

work for generating an explainable predictive model of water resources system resilience is applied to the Pirot water resources system in

the Republic of Serbia. The results indicate that our approach extracted high-level knowledge from the large datasets derived from multi-

model simulations. The rule-based knowledge structure facilitates its common-sense interpretation. The presented approach is suitable

for identifying scenario components that lead to increased system vulnerability, which are very hard to detect from massive raw data.

The fuzzy model also proves to be a satisfying fuzzy classifier, exhibiting precisions of 0.97 and 0.96 in the prediction of low resilience

and high rapidity, respectively.
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HIGHLIGHTS

• A FRBS was proposed for assessing the resilience of a water resources system to hazardous events and system element failures.

• An evolutionary learning procedure based on a genetic algorithm (GA) was used to generate a set of linguistic rules from data.

• Fuzzy rules provide a means for transparent reasoning about a system’s resilience using natural language.
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INTRODUCTION

Dam and reservoir systems are critical infrastructures and play important roles in hydropower generation, irrigation, water
supply, flood protection, and water quality control. Nowadays, dams are, on average, 50 years old, which makes them
highly prone to structural damage. Global climate change is expected to lead to dramatic changes in precipitation patterns

and an increased frequency and intensity of extreme weather events. As a result, this can lead to unfavorable working con-
ditions outside the designed envelopes of dams and accumulation systems and, consequently, to functional failure. Another
common cause of disturbance is earthquakes that induce landslides and pose challenges to hazard and risk assessment (Fan

et al. 2019). Failures of large dams due to disturbances caused by undesirable events are of serious concern, putting asset
owners in need of assessing the water systems’ dynamic resilience, i.e., its capability to recover after the disturbance event
(Simonovic & Arunkumar 2016; Khatri 2022). Many frameworks have been proposed for analysing and assessing the resili-

ence of water systems (Nikolopoulos et al. 2019; Behboudian & Kerachian 2021; Liu et al. 2021; Roni et al. 2022). Water
system safety risk assessment requires the identification of different hazardous events and analysis of their interactions, as
well as the spatial and temporal evolution of hazards that may lead to system failure (De Angeli et al. 2022). To prevent

the disruption of water system functionality, it is essential to identify and highlight multi-hazard interactions that can jeopar-
dize the water system services and safety. To analyse the response of the system to various operating conditions and estimate
its resilience, a system dynamics (SD) simulation model’s outputs can be used (King et al. 2017; Ignjatović et al. 2021). A wide
range of disturbance scenarios can be generated by combining different hazardous events and system failures and their var-

ious intensities, starting points, and durations (King & Simonovic 2020). Those input scenarios are then simulated by SD
models to quantify the risks related to flooding protection and hydro-energy generation under environmental hazards and
unfavourable conditions (system element failures).

The disturbance scenarios alongside the simulations’ results of those scenarios yield a large dataset. That dataset should be
analysed to identify and highlight those interactions between system states and hazards that lead to low resilience. Analysis of
such large data presented in a tabular form (using sorting and filtering) is practically impossible, while a graphical display of

data reveals only part of the useful information. The right way to access big data is automated knowledge extraction from it.
That knowledge reveals the system’s states and hazards (and their combinations and timings) that should be considered when
assessing system resilience. Discovering interpretable knowledge from data and finding potentially useful patterns in data are

complex processes. Knowledge processing for effective decision-making requires the direct use of computers (Simonovic
2020) and especially the methods of artificial intelligence (AI), namely its subfield of machine learning (ML).

Employing ML techniques to discover knowledge from data generated through computational simulations has rapidly
spread in the field of hydro science (Xu & Liang 2021; Zounemat-Kermani et al. 2021; Stojković et al. 2023). Hybrid ML

and optimization techniques were successfully utilized for hydrological streamflow forecasting (Ibrahim et al. 2022), predic-
tion of water resource demand, and their optimal allocation (Men et al. 2019; Li et al. 2021; Wu et al. 2021; Zhang & Zhang
2021). A long short-term memory (LSTM) deep learning model with parameters optimized by the Ant Lion Optimizer was

used for streamflow time-series prediction, resulting in remarkable accuracy (Yuan et al. 2018; Latif & Ahmed 2021). Least
square support vector machine (LSSVM) models and their hybrid versions were found to be highly accurate (Adnan et al.
2020; Ikram et al. 2022a). In Adnan et al. (2020), authors showed that LSSVM and multivariate adaptive regression splines

(MARS) can provide more accurate streamflow predictions in comparison to optimally pruned extreme learning machine
(OP-ELM) and M5Tree-based models. The MARS model’s ability to predict monthly streamflow was also compared to the
group method of data handling-neural network (GMDH-NN) and the dynamic evolving neural-fuzzy inference system
(DENFIS) (Adnan et al. 2021a). The accuracy of ML models for streamflow prediction was successfully improved by

using a covariance matrix adaptation evolution strategy for tuning control parameters (Ikram et al. 2022b). Liu et al.
(2021) successfully applied a support vector machine model optimized by the modified Grey Wolf Algorithm to improve
the accuracy of the evaluation of the resilience of the water resource system in the irrigation areas.

However, even with their remarkable advancement, a key limitation to the use of the most prominent ML models is that
they often lack transparency and interpretability. Those techniques generate black-box models, which do not provide an
explanation for the decisions they will take and cannot help in understanding the dependencies between adverse events

and the system’s resilience. Additionally, such models cannot be extended with a human experience. For AI to be trusted,
greater transparency can be provided by the means of explainable AI (XAI) systems (Adadi & Berrada 2018). One way to
ensure explainability is by creating a fuzzy rule-based system (FRBS) that is intrinsically understandable and comprehensible
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(Chimatapu et al. 2018; Mencar & Alonso 2019; Fernandez et al. 2019). The FRBS is based on fuzzy logic introduced by

Zadeh (1965). The main part of the FRBS is a set of IF-THEN rules expressed in natural language, which serve as a part
of the knowledge base (KB) for fuzzy logic-based inferencing. Another important part of the KB is the database of the mem-
bership functions (MFs), which enable the linguistic representation of numeric values. The data generated through the

numerous simulations of disturbance scenarios can be used for learning MFs and fuzzy rules. The process of learning
fuzzy rules can be viewed as finding the set of linguistic rules that, based on the data, best represents a relationship between
input and output. Searching for the best set of rules is guided by the optimization of a given performance metric. Having the
optimization task in mind, the automatic learning of fuzzy rules can be performed by means of a genetic algorithm (GA)

(Holland 1992). A GA is a powerful evolutionary algorithm that is widely used as a global search technique for finding
near-optimal solutions in complex search spaces. To date, various approaches had been proposed for GA-based learning
of fuzzy rules (Herrera & Magdalena 1997), and many of them have been successfully employed in complex real-world

systems modelling (Harp et al. 2009; Zanganeh 2017).
Fuzzy systems are often used in hydro science. The majority of the research is focused on the use of the adaptive neuro-

fuzzy inference system which is a mixed fuzzy-neural approach (ANFIS) (Adnan et al. 2021b; Jain et al. 2022; Vakili & Mou-

savi 2022). Zanganeh (2017) combines subtractive clustering, GA, and ANFIS to generate and optimize input fuzzy sets and
fuzzy rules for the prediction of wind-driven wave parameters. The fuzzy logic-based approach has also proven successful in
water system safety risk assessment (Duhalde et al. 2018; Fu et al. 2018; Ribas et al. 2021). Duhalde et al. (2018) apply fuzzy

sets to identify areas with a high vulnerability that were not detected by using traditional approaches. Ribas et al. (2021) par-
tition the input space to linguistic variables based on literature findings and construct the rule base using expert knowledge.
Jacquin & Shamseldin (2006) develop a rainfall-runoff model using the Takagi–Sugeno fuzzy inference system. For generating
the FRBS from data, they use a two-stage constrained optimization procedure, involving an evolutionary algorithm and sim-

plex search. Van der Heijden & Haberlandt (2015) introduce a fuzzy rule-based metamodel for the simulation of monthly
nitrate loads to replace a heavy process-based model. The authors carried out the training of the fuzzy rule systems with simu-
lated annealing, while the fuzzy sets for describing input variables were allocated through a statistical procedure. Sedighkia

et al. (2021) use expert-defined fuzzy inference systems as part of a coupled knowledge-based system–optimization model to
assess the environmental flow downstream of the reservoirs as one of the important water resource systems. Despite the popu-
larity of the fuzzy approach in solving problems of the aquatic environment, to the best of the authors’ knowledge, GA-based

learning of FRBS has not yet been used to assess water resource system resilience.
The present study proposes a general software framework for support in identifying the system’s states, external events, and

their temporal dependencies that affect the reduced dynamic resilience of the system. Two properties of dynamic resilience
are considered: robustness and rapidity. The proposed framework automatically extracts the knowledge from data and rep-

resents it by fuzzy rules. The rules express the cause-and-effect relationship between the system state and hazardous events on
one side and robustness and rapidity on the other. Linguistic terms are used to qualitatively describe system states, events, and
resilience measures. We aim to overcome the problem of perceiving mutual connections and influences between inputs and

outputs from a large amount of data. The main goal is to provide a comprehensible FRBS that enables a user to easily grasp
the causal relationships of events, their timings, and intensities that can lead to the system’s failure. To generate a compact set
of highly interpretable linguistic rules, we use an evolutionary learning procedure based on the GA. The data-driven GA-based

generation of FRBS does not rule out further refinement using experts’ opinions but rather allows expertise to be incorporated
into the FRBS naturally and transparently by translating it into fuzzy IF-THEN rules. The obtained FRBS can also be used as
the metamodel for predicting the system’s resilience under given conditions avoiding costly simulations to reason about the

resilience of the water resource system. The FRBS enables the fuzzy classification of disturbance scenarios according to how
they affect system resilience in terms of qualitatively described system robustness and rapidity. These two properties of
dynamic resilience were previously used to assess the water system’s dynamic resilience under hazardous events (Stojković
et al. 2023). Predicting resilience properties is considered a regression problem and is solved using an artificial neural net-

work (ANN), which accurately reproduces key dynamic resilience parameters. However, the ANN is a black-box
predictive model, which does not provide a transparent explanation of how the variables are jointly related to each other
to reach a final prediction. Our aim is to unbox the reasoning process and assess the dynamic resilience under hazardous

events transparently. We extract the high-level compact knowledge from the low-level large data. In contrast to the
ANN-based approach, we gain a comprehensible KB for reasoning about the system’s resilience using natural language
and thus facilitate the analysis of large data gathered from simulations. The method that we propose is universally applicable
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.101/1183021/jh2023101.pdf
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to any water system for which data are available regarding the system’s states and external events that can affect the resilience

of a system.
The rest of the paper is organized as follows: the second section gives a short description of the water resource system

model and the case study, followed by an explanation of the FRBS and GA-based learning of fuzzy rules from data in

more detail. The third section describes the process of generating our FRBS. The results and discussion are presented in
fourth section followed by the concluding remarks.

METHODS

Water resource system model

To mimic the non-linear behaviour of the water resources system, a system dynamic model is used (Stojkovic & Simonovic

2019; King & Simonovic 2020) alongside the earthquake (Rakić et al. 2022) and flood dynamics models to simulate the
impact of the temporal coincidence of unexpected hazardous events on the system. To include the dependence of the system’s
operation on the inflow and the system’s initial state, the variable initial water content in the reservoir at the time of system

failure is also generated (Ivetić et al. 2022). Simulation inputs are varied to determine system behaviour under various con-
ditions by analysing a wide range of simulation outcomes depending on the initial reservoir levels, inflows, timing, and
intensities of hazards. To measure the flood-related risk of the water system based on the output from SD simulations,
dynamic resilience is used as a time-dependent parameter since it overperforms the static risk measures such as system

reliability or vulnerability (Ignjatovic ́ et al. 2021). Dynamic resilience captures the system’s robustness and rapidity
(Simonovic & Arunkumar 2016). Rapidity describes the recovery time of the water resources system forced by an external
or internal hazard, whereas robustness explains a maximal reduced capacity of the water system in terms of delivering the

service requirements. To provide an explainable framework for assessing the resilience of water systems, the FRBS is devel-
oped using the data gathered through the simulations of SD and hazard models of the Pirot water resources system in the
Republic of Serbia.

Case study

The Pirot water resources system, located in the Republic of Serbia, extends over a flood-prone area and includes the Zavoj

reservoir at the Visočica river, which is hydraulically connected by a pressure tunnel with a hydropower plant (HPP) Pirot.
The HPP Pirot conveys the HPP outflows from the Visočica river to the Nišava river. The Pirot water system mitigates floods
at the Nišava river, generates hydropower, and controls downstream water quality by regulating the outflows from the reser-

voir over the low-flow seasons. The management of the Pirot water system depends on the actual volume of water stored in
the reservoirs, inflows, and energy demand (Ignjatović et al. 2021). The main characteristics of the water system used in this
study are listed in Table 1.

The dataset generated from the outputs of simulations of the SD and hazards models of the Pirot water system contains 900
records, with six input and two output variables. The input variables are the following: the flood hydrograph peak value
(Qmax), the corresponding return period (T), the initial water volume in the reservoir (Vinit), the temporal distance between

the flood peak and the earthquake start time (tdist), the earthquake duration (te), and the normalized value of the maximum
seismic acceleration (a). The outputs are numerical values: robustness and rapidity. In Table 2, a look at the first five rows of
the dataset is given. It can be noticed that the data entries are in the form of scalars, with Qmax obtained as the peak value of
the flow time-series (hydrograph).

Fuzzy rule-based system

The most powerful form of conveying information that people have about a real-world problem that requires reasoning is
natural language (Ross 2005). Fuzzy logic and FRBSs as the most important area of its application successfully utilize this
Table 1 | The characteristics of the Zavoj reservoir in the Pirot water resources system

Reservoir
Year
built

Drainage area
(km2)

Annual inflows
(m3/s)

Active volume
(106 m3)

Flood storage volume
(106m3)

Minimal operational level
(m.a.s.l.)

Spillway capacity
(m3/s)

Zavoj 1990 571 6.2 140 5.5 568 1,820
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Table 2 | First five rows of the dataset

Qmax T Vinit a tdist te Robustness Rapidity

0 2592.41 4414.84 1.67� 108 0.05 6.00 95.00 0.01 1117.00

1 875.31 195.49 1.75� 108 0.34 3.00 65.00 0.80 10.00

2 1737.83 1400.35 1.59� 108 0.40 2.00 60.00 0.04 259.00

3 3287.09 8728.54 1.53� 108 0.67 7.00 33.00 0.03 387.00

4 1278.08 579.57 1.63� 108 0.54 4.00 45.00 0.07 139.00
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power. In the FRBS, knowledge of the modelled system as well as the interactions and relationships that exist between its
parts are presented using fuzzy sets and fuzzy logic (Cordoon et al. 2001). Fuzzy sets (Zadeh 1965) enable the linguistic rep-
resentation of numerical variables through their membership degree to a certain linguistic term. The gradual transition of the

membership in the range from 0 to 1 describes vagueness and ambiguity that is common in natural language and allows direct
human interaction (Ishibuchi et al. 2004). The basic concepts of fuzzy sets theory are not included here but can be found in
Ross (2005). The FRBS consists of two main components: KB and the fuzzy inference system. KB is composed of the rule base

(RB) and the database of the MFs used to model the linguistic terms. The fuzzy inference system uses fuzzy logic to determine
the conclusions that can be inferred considering the information stored in the KB and the user input. Both MFs and IF-THEN
rules can be designed by experts or extracted from data.
Generating the FRBS and using it to assess the water resources system resilience

In the present research, we have used the method for the estimation of MFs from data presented in Bhatt et al. (2012) and the
GA-based FRBS learning method presented in Yuan & Zhuang (1996) for generating KB. For defining the linguistic terms,

the authors assume trapezoidal and triangle MFs. The algorithm for learning the MFs from the data presented in Bhatt et al.
(2012) determines the MF’s parameters using the data clustered by fuzzy c-means (FCM) clustering (Ross 2005) – cluster
matrix and centre vector. The algorithm approximates as many MFs, as there are clusters in the clustered data. The detailed

description of the algorithm will be omitted here as it can be found in Bhatt et al. (2012).
To generate fuzzy rules for the KB, we use genetic algorithms (Goldberg 2006), which have proven as a robust and powerful

mechanism when it comes to solving challenging optimization problems. They mimic the natural evolution process by mod-
ifying the set of potential solutions called the population, through selection, crossover, and mutation of individuals

(chromosomes). GA starts with the randomly chosen initial population. To select the best candidates for reproduction,
each chromosome in the current population must be evaluated and assigned a fitness value. An offspring population is cre-
ated from the selected parents in the current population by applying a crossover operator with a certain probability.

According to a predefined probability, the mutation operator then alters some of the offspring to increase the variability of
a population and prevent premature convergence to a local optimum. The offspring population replaces the current popu-
lation, and the processes of selection, crossover, and mutation for evolving new generations are repeated in a loop until a

stopping condition is met.
The three most popular approaches in GA-based learning of FRBS are the Pittsburgh approach (Smith 1980), the Michigan

approach (Booker et al. 1989), and iterative rule learning (Cordón & Herrera 1997). The Pittsburgh approach encodes an

entire set of rules in a single chromosome, whereas the Michigan approach and iterative rule learning use separate chromo-
somes to encode each rule in the KB. Yuan & Zhuang’s (1996) method for learning the FRBS utilized in this research uses the
Michigan approach. The method is presented in detail in Yuan & Zhuang (1996), and only the key points will be addressed
here as part of a detailed description of the general workflow of developing and using the FRBS to assess the resilience of a

complex water resources system.
A general workflow of developing and using the explainable FRBS for assessing the resilience of a complex water resources

system to hazards is depicted in Figure 1.

The workflow includes the following four phases:
Phase 1. The dataset is split into the training and test sets using an 80–20% split, respectively. The data for these subsets are

selected randomly to preserve generality.
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.101/1183021/jh2023101.pdf



Figure 1 | A general workflow of developing and using the FRBS for assessing the resilience of a complex water resources system.
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Phase 2. The training data are used for fuzzy partitioning of input and output space that is creating the database of the MFs,
which model the linguistic terms for all inputs and all outputs. For example, the following three linguistic terms can be used
for describing a value of the flood hydrograph peak (Qmax): Low, Medium, or High. Each linguistic term is determined by a
corresponding fuzzy set, i.e., by its MF. To determine MFs from data, the data must first be clustered. The FCM clustering

algorithm (Bezdek 1982) generates cluster centres from the data and assigns membership degrees of each numeric (crisp)
value to each fuzzy cluster. FCM allows data to belong to more than one cluster at the same time. Interpretability of clustered
data is improved by representing it with triangular, trapezoidal, or Gaussian MFs, rather than representing it as a matrix of

membership values. The algorithm for learning MFs from clustered data (Bhatt et al. 2012) is used for generating trapezoidal
MFs.

Phase 3. Obtained MFs are used for determining the membership degree of the crisp values of the training data (both input

and output variables) to each fuzzy partition. For example, according to the MFs for the fuzzy sets Low, Medium, and High, a
crisp Qmax value of 2,500 m3/s could, at the same time, belong to the fuzzy set Medium and the fuzzy set High to a degree of
0.4 and 0.7, respectively. By determining the memberships of the crisp training data to fuzzy partitions, we transform our

training dataset, such that each numeric input (output) value is replaced with its membership degrees to the fuzzy sets
that correspond to the linguistic terms used for describing the input (output) variable.

The transformed dataset is utilized for learning the FRBS through the evolutionary learning procedure based on GA, which
consists of the steps depicted in Figure 2.

Instead of the initial population consisting entirely of randomly chosen chromosomes, the proposed method uses the binary
encoding of the training dataset as part of the initial population. Combining randomly generated rules with the rules gener-
ated from training instances provides a diverse initial population with rather specific rules converted from training data, and

the additional knowledge (not covered by training examples) contained in randomly generated individuals. A rule is coded as
one chromosome consisting of segments that correspond to either an input variable in the condition part of the rule or an
output variable in the conclusion part of the rule. Each segment consists of binary genes corresponding to the linguistic

term for the inputs or outputs. For example, the chromosome (0 1 0, 1 0 0, 1 0 0, 0 0 1 0, 1 0 0, 1 0 0; 1 0 0 0, and 0 0 1),
where commas separate conditions and a semicolon separates the IF and the THEN part of the rule translates to the rule
IF (Qmax is Medium) AND (T is Short) AND (Vinit is Low) AND (a is Medium) AND (tdist is Short) AND (te is Short)
THEN (Robustness is Low) AND (Rapidity is High). A training example is converted to a chromosome by encoding a mem-
bership degree to 1 if it is greater or equal to 0.5 and 0 otherwise.

After creating the initial population in Step 1 of the algorithm, the fitness of all rules from the population is determined in
Step 2. Each rule is evaluated based on three criteria: the accuracy, the coverage, and the competitiveness measure in terms of
om http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.101/1183021/jh2023101.pdf
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Figure 2 | The steps of the genetic evolution process.
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the contribution of each rule to the population. The accuracy of the rule indicates the degree to which the condition of the

rule implies the conclusion of the rule. The coverage refers to the portion of the training dataset that is covered by the specific
rule, meaning that the conditional part of the rule corresponds to the input of the training example. The larger the coverage,
the more general the rule is. The third criterion for rule evaluation is the rule’s contribution to determining the correct con-

clusion for each example in the training set. Further details on fitness evaluation are beyond the scope of this paper and can
be found in Yuan & Zhuang (1996).

In Step 3, rule extraction is performed by first selecting the rules with accuracy above the desired accuracy level specified by

the user. From this candidate set, the best rules are further selected one by one based on three criteria in sequential order:
accuracy, coverage, and fitness. From all the rules with accuracy above the predefined value, the rules with the highest accu-
racy are first extracted. If more rules have approximately the same accuracy, the one with the largest coverage is selected. If
several rules have approximately the same coverage, the one with the highest fitness value is extracted and put into the final

set of rules. All the training examples that are correctly classified by the extracted rule are removed from the training set. The
process of moving the rules from the population into the final set of rules is performed until all the examples are removed
from the training set or there is no rule remaining in the current population. Next, if the stopping criterion is not satisfied,

the procedure advances to Step 4, where parents are selected proportionally to their fitness. The two parents can crossover
if they have the same conclusion part of the chromosome. The crossover operator in Step 5 exchanges the randomly selected
segments between parent chromosomes to generate two child chromosomes. The mutation operator generates a new chromo-

some by modifying the genes of one or more segments in an existing chromosome. An offspring generated through crossover
and mutation cannot survive if it represents a rule that is covered by any rule in the population.

In Step 6, a new generation is formed through the replacement of old, weak members with new offspring. After Step 6, the
algorithm returns to Step 2 to evaluate the new generation.

Phase 4. The FRBS created in Phase 3 represents the knowledge in the form of fuzzy rules. The rule base and the MFs can
be used to perform the Mamdani fuzzy inferencing. A set of six numeric values of input variables defines one scenario in
which the water resources system and hazards have the characteristics determined by the values of the input variables.

The FRBS, through the process of Mamdani inferencing, assigns each scenario to a certain fuzzy set corresponding to one
of the linguistic variables that describe robustness and to the one fuzzy set that describes rapidity. Crisp input values intersect
the antecedent MFs of certain rules at some membership levels. Due to the overlapping of the fuzzy sets, several rules are

applicable at the same time for one specific scenario. The minimum of all membership values determines matched rules' con-
sequent MFs. Aggregation (union) of conclusions of all matched rules yields the overall conclusion in the form of a fuzzy set,
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.101/1183021/jh2023101.pdf
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e.g., the linguistic value of an output. Once the FRBS is learned and tested, it can be used for inferencing with new, user-pro-

vided data for assessing the system’s resilience.
RESULTS AND DISCUSSION

The proposed procedure for GA-based learning of the FRBS from data was implemented in the Python programming

language, and the Pirot water system simulation dataset was used for training and testing. As previously mentioned, the
data has six inputs, two outputs, and 900 records (Table 2). Figure 3 visualizes the relationships between each input and
the output. The scatterplots at the first line show how robustness depends on Qmax, T , Vinit, a, tdist, and te, respectively.
The scatterplots at the second line depict the dependence between each input and the rapidity. The relationships between

the inputs and outputs are quite non-linear. The data were split into the training and test sets using an 80–20% split, respect-
ively. The data for these subsets are selected randomly to preserve generality.

In Phase 2 of the abovementioned procedure, we used the FCM algorithm to cluster the values of each input and output

variable and obtained the MFs of all linguistic terms used for describing the inputs and outputs. The inputs, outputs, corre-
sponding universal set, and the terms used for partitioning the input and output universes are presented in Table 3. In
Figure 4, a graphical representation is given for each fuzzy set that corresponds to a specific linguistic term used for describing

the values of the input and output variables.
The crisp values of inputs and outputs for each data record were mapped into corresponding memberships to fuzzy sets

(Phase 3). For example, the Qmax crisp value of 1,500 m3/s has the membership degree of 0.25 to the fuzzy set Low and

0.8 to the fuzzy set Medium. Considering the memberships of all six inputs and two outputs to each of the corresponding
fuzzy sets, each record of the dataset was coded as an array of 26 real numbers. Each element of the array corresponds to
a membership degree of input (output) to one of the fuzzy sets used for the linguistic description of the input’s (output’s) inten-
sity. After determining the memberships of the crisp training data to fuzzy partitions, we have noticed that the training dataset

is highly imbalanced with approximately 75% of records related to the Low robustness of the system, 16% ofMedium-low, 6%
ofMedium, and just 3% of records with High robustness. This is the consequence of numerous simulations being dedicated to
analysing situations that could lead to the Pirot system failure under hazards. The distribution of data records according to

rapidity is 20% High, 32% Medium, and 48% Low rapidity.
The GA was further applied to generate rules from the training data. The initial population consisted of 720 binary-encoded

training examples and 280 randomly generated individuals. In each generation, 20% of the population was selected for repro-

duction and the mutation rate was 0.02. The parameters used in calculating the coverage and accuracy of the rules are the
same as in Yuan & Zhuang (1996). The number of rules extracted from the population decreased through generations.
The final rule base comprised 240 rules. Table 4 presents the part of the fuzzy rule system obtained in Phase 3, for the

Pirot case study. Each rule includes six inputs and two outputs in the binary notation of GA chromosomes.
Figure 3 | Pairwise scatterplots of input and output data.
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Table 3 | Input and output variables and the main characteristics of corresponding MFs

Inputs Description Universal set Terms Outputs
Universal
set Terms

Qmax The flood hydrograph peak value [500, 4,500] Low
Medium
High

Robustness [0, 1] Low
Medium-
Low
Medium
High

T The return period [10, 10,000] Short
Medium
Long

Rapidity [10,
1,300]

Low
Medium
High

Vinit The initial water volume in the reservoir [133� 106, 190� 106] Low
Medium
High

a The normalized value of the maximum seismic
acceleration

[0, 1] Small
Medium-
Small
Medium
Large

tdist The temporal distance between the flood peak
and the earthquake start time

[0, 12] Short
Medium
Long

te The earthquake duration [0, 100] Short
Medium
Long
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Fuzzy rules can be translated into verbal expressions and thus provide a means for reasoning about a system’s resilience
using natural language. This gives the fuzzy model transparency, which popular black-box models do not have, and thus
an advantage over them since it enables a user to easily grasp the causal relationships of events, their timings, and intensities

that can lead to the system’s failure. Since there is no objective criterion to measure transparency, here we can only show how
to interpret the fuzzy rules from Table 3 and thus demonstrate transparency in the specific example.
Figure 4 | Fuzzy sets for the linguistic description of inputs and outputs obtained from the data.
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Table 4 | Examples of the fuzzy rules obtained via the GA

No.

Qmax T Vinit a tdist te Robustness Rapidity

L M H Sh M Lg L M H S MS M La Sh M Lg Sh M Lg L ML M H L M H

R1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0

R2 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0

R3 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1

R4 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0

R5 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1

L, Low; M, Medium; H, High; Sh, Short; Lg, Long; S, Small; MS, Medium-Small; ML, Medium-Low; La, Large.
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R1: IF (Qmax is Low) AND (T is Short) AND (Vinit is High) AND (alpha is Medium) AND (tdist is Long) AND (te is Short)
THEN (Robustness is High) AND (Rapidity is Low)

R2: IF (Qmax is Low) AND (T is Short) AND (Vinit is Low) AND (alpha is Medium) AND (tdist is Medium) AND (te is
Medium) THEN (Robustness is Medium) AND (Rapidity is Medium)

R3: IF (Qmax is High) AND (T is Medium) AND (Vinit is Low) AND (alpha is Small) AND (tdist is Short) AND (te is Long)
THEN (Robustness is Low) AND (Rapidity is High)

R4: IF (Qmax is Medium) AND (T is Short) AND (Vinit is Low) AND (alpha is Medium) AND (tdist is Medium) AND (te is
Short) THEN (Robustness is Medium) AND (Rapidity is medium)

R5: IF (Qmax is High) AND (T is Long) AND (Vinit is Medium) AND (alpha is Large) AND (tdist is Long) AND (te is Short)
THEN (Robustness is Low) AND (Rapidity is High)

The examples of obtained rules indicate that the proposed approach successfully extracted high-level knowledge from the
large amount of numerical data gathered by simulating numerous scenarios using the SD model and hazard models.

The fuzzy KB provides useful insights into the system’s vulnerability. It enables the analysis of potential combinations of
intensities and durations of indicators and events that were most likely to result in significant safety impacts. The bubble
chart in Figure 5 visualizes how often each of the input values occurs in rules with low robustness and high or medium rapid-

ity as an outcome. It is obvious that in the majority of scenarios, which lead to an unfavourable outcome, the earthquake
Figure 5 | The occurrences of each input’s linguistic value in rules with low robustness and high or medium rapidity as an outcome. The size
of a bubble is determined by the number of rules that contain the specific linguistic value of an input.
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duration (te) is long. Medium and high peak values of the flood hydrograph (Qmax) have an almost equal share, while low

Qmax is rarely present in critical scenarios. Unexpectedly, low and medium initial water volume in the reservoir (Vinit) are
more frequent in those scenarios than high volume, but they are usually combined with long earthquake durations or high
values of Qmax. All three values for T, as well as for tdist, are almost equally represented in the scenarios that lead to the

system disruption, while high a values do not play a significant role in low system resilience.
The Python Scikit-Fuzzy fuzzy logic toolbox (Scikit-Fuzzy) was used to implement the obtained FRBS and enable Mamdani

inferencing with the test data that contained 182 records. First, we evaluated the proposed solution by comparing the
expected output’s assignment to one of the fuzzy sets used for partitioning the output universe with the predicted output’s

assignment. Tables 5(a) and 5(b) show the confusion matrices for robustness and rapidity, respectively. According to the con-
fusion matrix, 17 out of 157 scenarios that lead to low robustness were classified as medium-low. Six out of 15 scenarios that
should be medium-low were misclassified, five as ones with low robustness, and one as medium robust. For the eight scen-

arios that yield medium robustness, three were incorrectly classified as medium-low, whereas one high robust example was
classified as a medium. Having in mind that adjacent fuzzy sets overlap, misclassifying an example into a fuzzy set that is
adjacent to the correct one is not exactly a wrong judgment. The confusion matrix for the rapidity shows results almost similar

to the ones for the robustness, with the exception that one example with low rapidity was misclassified as high, which is not
the fuzzy set adjacent to the fuzzy set Low. Table 6 lists the values of the metrics resulting from the confusion matrices. Since
the data were imbalanced, we did not calculate the accuracy. As expected, precision, recall, and f1-score have very good

values when it comes to the examples with low robustness and with low or high rapidity because they prevailed in the training
set.

The results prove that the fuzzy KB extracted from data using the proposed software framework can serve for the compre-
hensible identification of potential combinations of events that were most likely to result in significant safety impacts.

Moreover, the evaluation of the classification model reveals that the obtained FRBS may serve as an explainable fuzzy
predictor.
Table 5 | Confusion matrix for (a) the robustness and (b) the rapidity

(a) Robustness

Actual

Predicted

Low Medium-Low Medium High

Low 140 17 0 0

Medium-Low 5 9 1 0

Medium 0 3 5 0

High 0 0 1 1

(b) Rapidity

Actual

Predicted

Low Medium High

Low 90 7 1

Medium 6 15 1

High 0 10 52

Table 6 | Results on the test set

Robustness Precision Recall f1-score Rapidity Precision Recall f1-score

L 0.97 0.89 0.93 L 0.94 0.92 0.93

ML 0.31 0.60 0.41 M 0.47 0.68 0.56

M 0.71 0.62 0.67 H 0.96 0.84 0.90

H 1.00 0.50 0.67
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CONCLUSIONS

This study aimed to propose a general software framework for assessing the resilience of a water resources system to hazar-
dous events using a FRBS. The proposed methodology includes four phases to create an FRBS from data. The data were
obtained as a result of numerous simulations of the SD model and hazard models, which introduce the temporal coincidence

of unfortunate events. As the case study area, we used the Pirot water resources system in the Republic of Serbia. However,
the framework applies to any water system for which there is available data regarding the indicators that can affect the resi-
lience of a system.

The main part of the framework is the evolutionary learning procedure based on a GA that is used for learning the FRBS.
The framework also includes determining the fuzzy partitioning of input and output spaces, fuzzification of numerical input
and output values, and evolutionary learning of the fuzzy rules. By learning the rules, the high-level compact knowledge is

extracted from the low-level large data. In this way, we gain a transparent and comprehensible KB for reasoning about the
system’s resilience using natural language. Once the fuzzy rule-based model is trained, it can be used independently of the
original SD model and hazard models, avoiding costly simulations to analyse the resilience of the water resources system.

Additionally, the fuzzy KB can be upgraded using experts’ opinions, which can be naturally and transparently translated
to fuzzy IF-THEN rules. Knowledge represented in the form of fuzzy rules is used for identifying the events (or system’s
states), their characteristics, and temporal relations that are most likely to result in significant safety impacts. It enables
the detection of scenario components to which the system is sensitive. In the case of the Pirot water system, rule analysis

showed that the system’s resilience is most threatened by the duration of an earthquake rather than its intensity. One weak-
ness of the proposed framework is the duration of the GA-based learning procedure. The computational cost of the fitness
evaluation is extremely high due to the immense training dataset against, which all the rules in the population are evaluated.

This can be overcome by the parallel execution of the GA, which will be the aim of our future work.
The FRBS obtained for the Pirot use case was also tested as the predictor of the system’s resilience under given conditions.

The FRBS was used for fuzzy classification of disturbance scenarios according to how they affect system resilience in terms of

qualitatively described system robustness and rapidity. The proposed solution has been evaluated using the test dataset. The
expected output’s assignment to one of the fuzzy sets used for partitioning the output universe was compared to the predicted
output’s assignment. This resulted in confusion matrices, precision, recall, and f1-score for both robustness and rapidity resi-

lience measures. All obtained results were satisfying and showed that it is possible to learn an explainable fuzzy KB from data
via GA and use it for highlighting potential combinations of events that were most likely to result in significant safety impacts.
With a sufficiently large KB, the proposed solution can be used to guide the further generation of risk scenarios, so rather than
simulate numerous randomly generated scenarios, one can use fuzzy analysis to direct the investigation toward combinations

of states and events that pose a risk to system resilience. Hence, this approach constitutes a very promising contribution
toward bringing great predictive power to assess the resilience of complex water and infrastructure systems to hazardous
events and benefits water management practitioners.
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