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Abstract: This paper introduces the foundation for the third component of a pioneering open-source scientific question-
answering system. The system is designed to provide referenced, automatically vetted, and verifiable answers
in the scientific domain where hallucinations and misinformation are intolerable. This Verification Engine is
based on models fine-tuned for the Natural Language Inference task using an additionally processed SciFact
dataset. Our experiments, involving eight fine-tuned models based on RoBERTa Large, XLM RoBERTa
Large, DeBERTa, and DeBERTa SQuAD, show promising results. Notably, the DeBERTa model fine-tuned
on our dataset achieved the highest F1 score of 88%. Furthermore, evaluating our best model on the HealthVer
dataset resulted in an F1 score of 48%, outperforming other models by more than 12%. Additionally, our
model demonstrated superior performance with a 7% absolute increase in F1 score compared to the best-
performing GPT-4 model on the same test set in a zero-shot regime. These findings suggest that our system
can significantly enhance scientists’ productivity while fostering trust in the use of generative language models
in scientific environments.

1 INTRODUCTION

In the scientific field, the veracity of information
is paramount, especially as large language models
(LLMs) become increasingly integrated into research
methodologies. The paper [ANONYMIZED] out-
lines a novel open-source initiative designed to mit-
igate the risks of inaccuracies, or ”hallucinations”, in
answers generated by LLMs in the biomedical do-
main. Central to this initiative is a sophisticated archi-
tecture comprising three core components: an infor-
mation retrieval system that utilizes both semantic and
lexical search combination techniques to retrieve sci-
entific papers from PubMed1; a Retrieval Augmented
Generation (RAG) module with a generative model
fine-tuned to produce referenced answers based on
the retrieved scientific papers; and a verification en-
gine tasked with cross-checking these generated an-
swers against scientific papers to ensure accuracy and
to identify potential hallucinations. This system aims
to enhance the productivity of researchers by provid-
ing reliable information and also to instill trust in the
use of generative language models within the scien-
tific domains where misinformation can have serious
repercussions.

According to (Guo et al., 2022), claim verifica-
tion is a process performed after a claim is generated
and evidence is retrieved. The authors also segment
the claim verification process into two components:
verdict prediction, where claims are assigned truth-

1https://pubmed.ncbi.nlm.nih.gov/

fulness labels, and justification production, where ex-
planations for verdicts must be generated (Guo et al.,
2022). Our system generates claims using RAG and
we use the retrieved documents from the PubMed
repository as evidence. In this paper, we are go-
ing to perform the verdict prediction task by trans-
forming it into the natural language inference (NLI)
task to predict one of the labels: support, contra-
dict, and no evidence. The development of a model
specifically tailored for textual entailment or NLI rep-
resents a crucial element of the verification engine
in [ANONYMIZED]. In this paper, we are going to
present our effort on enhancing and fine-tuning differ-
ent models to achieve accuracy in the task of scientific
claims verification.

By fine-tuning state-of-the-art models for the NLI
task in the scientific field, we plan to allow our model
to detect the subtle differences in the statement be-
tween claims supported by evidence, those that con-
tradict the evidence, and those for which evidence is
lacking. This will not only build upon the founda-
tional work presented in [ANONYMIZED] for claim
verification but also introduce a novel methodology
and models designed to provide claim verification by
fine-tuning models for textual entailment tasks in the
biomedical domain. The model fine-tuned for tex-
tual entailment will enhance the automated scientific
claim verification process in [ANONYMIZED], com-
plementing retrieval and generation steps by verifying
generated text.

Our work’s contributions are twofold: firstly, we
fine-tuned different deep learning models on the Sci-



Figure 1: Architecture of our verification system.

Fact dataset to significantly improve textual entail-
ment predictions in the biomedical domain, achieving
state-of-the-art results. Secondly, we provide com-
parative results of these models fine-tuned with the
SciFact dataset.

The paper is organized as follows: Section 2 pro-
vides an overview of our comprehensive system, de-
tailing the RAG, and verification of claims produced.
Section 3 presents current datasets and methods for
the claim verification task. The transformation of the
chosen dataset, as well as the models used for this
task and their parameters, are presented in Section 4.
Results are given in Section 5, with an accompanying
error analysis in Section 6. Finally, Section 7 presents
the conclusions drawn from our study and outlines di-
rections for future research.

2 OVERALL SYSTEM DESIGN

Our verification system encompasses two main pro-
cesses: Retrieval Augmented Generation (RAG) and
the Verification Engine. The RAG process, con-
sisting of two components, is based on a fine-tuned
large language model (LLM) for referenced question-
answering. In this setup, retrieved relevant abstracts
from PubMed are provided to the LLM as input
through a prompt. The output is an answer based
on these PubMed abstracts, with each statement ap-
propriately referenced, facilitating subsequent verifi-
cation by the Verification Engine.

In this section, we describe the three main com-
ponents of our system (see Figure 1), to offer clarity
to the entire process which contains claim verification
as its second and final verification step.

The Information Retrieval Component (IR) uti-
lizes data from the PubMed database2, which con-
tains citations and biomedical literature from vari-
ous sources. The IR system incorporates both sparse
vectors (lexical index) and dense vectors (seman-
tic index), facilitating lexical, semantic, and hybrid
searches.

For lexical retrieval, based on BM25, we use
OpenSearch3 to create an index of PubMed articles
by concatenating the titles and abstracts into a single
indexed field. For semantic retrieval, based on dense
vectors, we employ the Qdrant4 vector database. To
generate vector embeddings, we utilize a bi-encoder
sentence transformer model pre-trained on the MS-
Marco dataset5, which had the highest performance
on the Passage Retrieval Task at the time of index-
ing6.

Hybrid search in our system combines the lexical
and semantic IR components. To implement a hybrid
search, we normalized the scores from these two IR

2https://pubmed.ncbi.nlm.nih.gov/download/
3https://opensearch.org/
4https://qdrant.tech/
5https://huggingface.co/sentence-transformers/

msmarco-distilbert-base-tas-b
6https://www.sbert.net/docs/pretrained-models/

msmarco-v3.html



methods to a scale ranging from 0 to 1. The scores
from each search method are then multiplied by the
respective importance weights. This approach allows
for the identification of both direct matches and en-
hances the discovery of semantically related phrases
and text segments, even when exact textual matches
are absent. The selected documents from the IR Com-
ponent are then passed to the Generative Component,
which is responsible for generating the appropriate re-
sponse.

The Generative Component receives the user
query and 10 retrieved documents as its input. It
consists of a generative model, currently Mistral-7B-
Instruct-v0.27, which we additionally fine-tuned for
the task of question-answering with references us-
ing the QLoRA methodology (Dettmers et al., 2023)
and a dataset of randomly selected questions from
the PubMedQA dataset (Jin et al., 2019). The out-
put of the model is an answer to the user query which
contains a reference for each of the claims generated
based on the relevant articles.

The Verification Component is designed to ver-
ify the claims created by the RAG component. The
specific type of verification and the models used for
this process are described in detail in Section 4. Since
the answer of the generative model can contain mul-
tiple claims/claim parts, our goal is to create a model
for verifying individual claim parts, and how we com-
bine them will be decided in the future.

3 RELATED WORK

The task of determining a claim’s veracity is dubbed
differently in the literature: from verdict predic-
tion (Tan et al., 2023) or veracity prediction (Vladika
et al., 2024) to claim verification (Wadden et al.,
2020), to only name a few, and usually forms a part
of a multi-component pipeline aiming to produce as
factual results as possible (Tan et al., 2023). The
task typically consists of assessing a claim and its
corresponding evidence and categorizing it into one
of three distinct labels: support/evidence, contradic-
tion/refute, and no evidence/not enough info. The
process of verifying scientific claims can be concep-
tualized within the framework of natural language
inference (NLI), treating the claim verification task
as a multi-class classification task, a perspective that
aligns with prior research (Thorne et al., 2018; Wad-
den et al., 2020).

Different techniques have been utilized and de-
veloped to improve claim verification, and recently,

7https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

transformer models have achieved state-of-the-art
performance in fact-checking in general, both in gen-
eral and scientific domains (Tan et al., 2023). In-
put for these models usually consists of concatenated
claim and evidence pairs from which they create rep-
resentations for classifying relationships between the
two (Tan et al., 2023). Including the entire context of
the evidence (e.g. entire document) ensures minimum
loss of information and better results during inference
(Wadden et al., 2022).

Interestingly, both general-purpose and domain-
specific large language models are used for the task
of scientific claim verification (Vladika and Matthes,
2023). That general-purpose models are success-
fully used for this task is supported by the work of
the creators of the SciFact dataset, who released the
VeriSci model (Wadden et al., 2020). This model
uses RoBERTa-large (Liu et al., 2019) model pre-
trained on the FEVER dataset (Thorne et al., 2018)
and fine-tuned on SciFact dataset as a component for
label prediction, since it demonstrated the strongest
performance compared to other tested scenarios. This
model also showed better accuracy compared to SciB-
ERT (Beltagy et al., 2019), BioMedRoBERTa (Gu-
rurangan et al., 2020), and RoBERTa-base when all
trained only on the SciFact dataset.

While general-domain datasets for the task of
claim verification existed since 2014 (Vlachos and
Riedel, 2014), the first dataset for scientific claim ver-
ification, SciFact, appeared in 2020 (Wadden et al.,
2020). The number of different scientific claim
verification datasets continued to grow ever since,
from those that collect claims from social media
posts (Mohr et al., 2022), Wikipedia and Internet in
general (Diggelmann et al., 2021; Sarrouti et al.,
2021), different web portals (Kotonya and Toni, 2020;
Vladika et al., 2024), science exam questions (Tan
et al., 2023) or publications (Malaviya et al., 2023).
However, SciFact is still one of the rare datasets that
contain claims from research papers and is the most
used dataset for building scientific claim verification
systems to date (Vladika and Matthes, 2023).

The work of (Sarrouti et al., 2021) shows that the
choice of the in-domain dataset for fine-tuning makes
a significant difference. The authors conducted ex-
periments on several baseline models: BERT (De-
vlin et al., 2019), SciBERT, BioBERT(Lee et al.,
2019), and T5 (Raffel et al., 2020), trained and eval-
uated on the HealthVer dataset (Sarrouti et al., 2021),
with T5 demonstrating superior performance over all
other models. They also tested the BERT-base model
fine-tuned on FEVER (Thorne et al., 2018), SciFact,
PubHealth, and HealthVer datasets, and assessed its
performance on the HealthVer test set. Their find-



ings suggest that despite the FEVER dataset’s size
advantage over SciFact and HealthVer, the model
achieved superior F1 scores when trained on Sci-
Fact and HealthVer datasets. Since FEVER is based
on Wikipedia sentences, this supports the notion that
training on in-domain claims yields more substantial
benefits for domain-specific claim verification tasks.

The positive effect of in-domain datasets is fur-
ther confirmed by the work of (Tan et al., 2023),
who performed in-domain fine-tuning first using
Med-Fact and Gsci-Fact datasets (Tan et al., 2023)
and then using SciFact, HealthVer, and CLIMATE-
FEVER (Diggelmann et al., 2021) of BERT, De-
BERTa (He et al., 2021), SciBERT, Longformer, and
BioBERT. In comparison with only fine-tuning the
models using SciFact, HealthVer, and CLIMATE-
FEVER (Diggelmann et al., 2021), they managed to
achieve an improved performance for most models,
with DeBERTA performing best in almost all scenar-
ios.

4 OUR MODEL FOR CLAIM
VERIFICATION

Similarly to the prompt-generated answers to cer-
tain questions in generating long-form responses that
contain multiple claims (Wei et al., 2024), the re-
sponses generated by our RAG module contain mul-
tiple claims supported by references to PubMed ab-
stract as evidence. This structured approach ensures
that each claim is supported by relevant scientific lit-
erature, enhancing the credibility and reliability of the
generated responses.

The model’s performance is evaluated through
various metrics, including macro and weighted pre-
cision, recall, and F1-score, and also accuracy, which
collectively provide a comprehensive understanding
of its effectiveness in the task.

In our recent exploration of advanced natural lan-
guage processing techniques, we opted for a fine-
tuning process for 3 cutting-edge models: RoBERTa-
large (Liu et al., 2019), XLM-RoBERTa Large (Con-
neau et al., 2019a), and DeBERTa Large (He et al.,
2021), alongside DeBERTa SQuAD - a DeBERTa
modelfine-tuned using the SQuAD dataset. Our pri-
mary objective was to enhance their performance on
the task of textual entailment.

The selection of DeBERTa was motivated by its
outstanding performance in claim verification exper-
iments (Tan et al., 2023). RoBERTa was chosen for
its modified attention mechanisms and the strongest
performance on label prediction task (Wadden et al.,
2020). XLM Roberta exhibited better performance

on English data compared to RoBERTa (Conneau
et al., 2019b). DeBERTa SQuAD was selected due
to its training on question-answer pairs, specifically
tailored for question answering tasks.

Fine-tuning was conducted using the SciFact
(Wadden et al., 2020) dataset, which is specifically
designed to support the development and evaluation
of automated fact-checking systems focusing on sci-
entific claims. Our objective in fine-tuning these
models with the SciFact dataset was twofold: to im-
prove their performance in discerning textual entail-
ment within scientific texts and to compare their ef-
fectiveness in this specialized domain.

4.1 Dataset Transformation

The SciFact dataset comprises pairs of claims and ev-
idence within the biomedical domain — a domain
noted for its classification challenges even among hu-
man experts. We anticipate that it will serve as an
optimal dataset for the fine-tuning of models aimed at
claim verification within our system.

The SciFact dataset is structured into two separate
files: corpuses and claims. The corpuses file contains
the titles and abstracts of scientific articles, providing
a rich source of evidence. The claims file includes
various claims linked to these scientific articles via an
identification number, facilitating the process of ver-
ifying the claims against the provided evidence. Ini-
tially, the claims file is divided into three parts: train-
ing, validation, and test. However, the publicly avail-
able version of the dataset does not include labels for
the test partition. As a result, the 300 examples in
the test partition were excluded from our analysis. To
maximize the data available for our experiments, we
combined the training and validation subsets, yield-
ing a total of 1,711 examples. This combined dataset
serves as the foundation for training, validating, and
evaluating our claim verification models.

Initially, the titles and abstracts extracted from the
corpus file underwent individual cleaning procedures.
This process involved eliminating redundant spaces,
excluding special characters present at the ends of the
texts, removing surplus parentheses and brackets, and
filtering out superfluous information contained within
the abstracts, such as (ABSTRACT TRUNCATED AT
250 WORDS). Recognizing the informative value in-
herent in article titles, we made a deliberate choice to
concatenate them with their corresponding abstracts
to construct a comprehensive response to the claims.
Throughout this concatenation process, special at-
tention was paid to titles lacking terminal punctua-
tion. To maintain coherence and facilitate compre-
hension, we ensured that a concluding punctuation



mark was appended to such titles. This step was
essential to mitigate potential ambiguity and prevent
the model from misinterpreting the concatenated text
in instances where unpunctuated titles were directly
joined with the initial sentence of the abstract, creat-
ing potentially unrelated sentences.

Subsequently, using the identification number, we
integrated information from both files, ensuring that
each claim was matched with its corresponding con-
catenation of the title and abstract, along with one
of three labels: no evidence, support, or contradict.
The SciFact dataset was initially designed so that the
same labels for an abstract were repeated if they were
found in multiple sentences of that abstract. How-
ever, since we opted to consider the entire concate-
nated title and abstract as a single response to the
claim, rather than treating each sentence separately,
we performed a deduplication of these instances. This
step ensured that redundant combinations were re-
moved. Ultimately, this process yielded 1,213 unique
claim+[title+abstract] combinations, which form the
final dataset for our experiments. This comprehen-
sive and deduplicated dataset provides a robust foun-
dation for training and evaluating our claim verifica-
tion models.

Descriptive statistics of the combined dataset
formed in this manner revealed that approximately
36% of claim+[title+abstract] combinations are la-
beled as no evidence, about 42% are labeled as sup-
port, and around 22% are labeled as contradict. We
divided the dataset into training, validation, and test
subsets in a ratio of 80:10:10, ensuring that the pro-
portion of each label is preserved across all subsets.
This stratified division helps maintain the consistency
of label distribution, which is crucial for accurately
training and evaluating the model’s performance.

4.2 Experiments and Training
Parameters

Our study aims to perform a comparative analysis of
various transformer models fine-tuned and evaluated
using the additionally processed SciFact dataset.

Determining one of the three relationships (no ev-
idence, support, contradict) in which a claim and an
evidence can stand, we decided to consider as a Tex-
tual Entailment task. This task can be viewed as the
(2) Sequence Classification task into 3 classes by ap-
propriately structuring the input data. Therefore, the
task of claim verification could be conceptualized as
a multi-class classification task.

To address this task, transformer models were
fine-tuned utilizing the concatenation of a claim (c)
and a corresponding PubMed title+abstract concate-

nation, serving as evidence (e). Since the 4 models
that we fine-tuned with the formatted SciFact dataset
for the Textual Entailment task are rooted in either
BERT or RoBERTa architecture, the inputs for them
are:

[CLS]c[SEP]e[SEP]

for models with the basic architecture of the BERT
model, and

< s > c < /s >< /s > e < /s >

for models with the basic architecture of the
RoBERTa model.

The objective for our model is to accurately as-
sign one of the following labels (l): no evidence, sup-
port, or contradict. Based on the received input, the
model’s prediction is formalized as:

l{c,e} ∈ {no evidence,support,contradict}

This formulation allows for a systematic evalua-
tion of the model’s ability to discern and categorize
the relationship between biomedical claims and their
corresponding evidential support.

All trainings used ADAM optimizer (Kingma and
Ba, 2014) with a learning rate value of 1e-5, weight
decay of 0.01, and were conducted on a single DGX
NVIDIA A100-40GB GPU using the PyTorch frame-
work and Hugging Face Transformer library. The
number of epochs for all models was initialized at 15,
with an early stopping strategy implemented on the
validation subset based on the F1 metric to determine
the optimal model checkpoint. We appllied two dis-
tinct values for the early stopping hyperparameter for
each of the 4 models (three and four), resulting in a
total of eight fine-tuned models for evaluation. Model
evaluation was conducted by exact prediction-label
matching, employing standard performance metrics
of F1 score, accuracy, precision, and recall.

5 RESULTS

Our models underwent a three-stage evaluation pro-
cess. First, we assessed the models on a test subset of
the transformed SciFact dataset (refer to Section 5.1)
to evaluate their performance and identify the best
model. Next, we tested the optimal model on an ex-
ternal dataset (Section 5.2). Finally, we compared the
performance of our top model against GPT-4 models
in Section 5.3.



Table 1: The results of eight fine-tuned models 80% of SciFact data, validated on 10% of SciFact data, and tested on remaining
10% of data

RoBERTa LSF XLM RoBERTa LSF DeBERTaSF DeBERTa SQuADSF

NE* S C wa NE S C wa NE S C wa NE S C wa

P 0.71 0.55 0.00 0.48 0.83 0.69 0.54 0.71 0.83 0.86 0.85 0.84 0.86 0.90 0.82 0.87
3 R 0.73 0.82 0.00 0.61 0.89 0.67 0.52 0.71 0.86 0.84 0.81 0.84 0.86 0.88 0.85 0.87

F1 0.72 0.66 0.00 0.53 0.86 0.68 0.53 0.71 0.84 0.85 0.83 0.84 0.86 0.89 0.84 0.87

Acc 0.61 0.71 0.84 0.87

P 0.85 0.75 0.67 0.77 0.75 0.76 0.71 0.74 0.88 0.90 0.88 0.89 0.82 0.91 0.88 0.87
4 R 0.89 0.76 0.59 0.77 0.91 0.67 0.63 0.75 0.95 0.88 0.78 0.89 0.93 0.84 0.81 0.87

F1 0.87 0.76 0.63 0.77 0.82 0.71 0.67 0.74 0.91 0.89 0.82 0.88 0.87 0.88 0.85 0.87

Acc 0.77 0.75 0.89 0.87
* NE: no evidence, S: support, C: contradict, wa: weighted average, P: precision, R: recall, F1: F1 score
Acc: accuracy

Table 2: Results of the DeBERTa model fine-tuned on the 80% and 90% of the SciFact dataset end evaluated on the HealthVer
test set.

DeBERTaSF−80 DeBERTaSF−90

NE S C wa NE S C wa

P 0.46 0.70 0.66 0.60 0.47 0.67 0.69 0.59
R 0.94 0.25 0.15 0.50 0.88 0.29 0.27 0.52

F1 0.62 0.37 0.24 0.44 0.61 0.40 0.39 0.48

Acc 0.50 0.52

5.1 In-domain Evaluation

As indicated in Table 1, the best-performing model
with an early stopping patience of 3 was DeBERTa
SQuAD, achieving an F1-score of 0.87. In compari-
son, the DeBERTa model with an early stopping pa-
tience of 4 achieved the highest F1-score of 0.88.

The results also reveal that the CONTRADICT
class poses the most significant challenge for the
models, which is anticipated given that this class con-
stitutes only 22% of the dataset, resulting in fewer ex-
amples for training and evaluation. This imbalance
likely contributes to the models’ difficulties in accu-
rately predicting this class, highlighting the need for
more targeted strategies to improve performance in
underrepresented categories.

5.2 Out-of-domain Evaluation

To evaluate our best-performing model, DeBERTa
fine-tuned with an early stopping patience param-
eter set at 4, on a dataset distinct from the one
used for training and in-domain evaluation, we chose
the HealthVer dataset. This dataset is designed

for evidence-based fact-checking of health-related
claims, allowing researchers to assess the validity
of real-world claims by evaluating their truthfulness
against scientific articles.

As can be seen in Table 2 (DeBERTaSF−80), we
obtained a weighted average F1 score of 0.44 and an
accuracy of 0.50. Comparing these results to those
reported by the authors in (Sarrouti et al., 2021),
who fine-tuned a BERT-base model with SciFact and
evaluated it on the HealthVer test set, we observe
that they achieved the F1 score of 0.36 and an accu-
racy of 0.39. This demonstrates that our DeBERTa
model fine-tuned on the transformed SciFact dataset
improved upon these results.

In Section 5.1, we identified DeBERTa fine-
tuned with 80% of the transformed SciFact dataset
as the optimal model for Textual Entailment. Sub-
sequently, we evaluated this model out-of-domain
on the HealthVer dataset, observing superior perfor-
mance compared to previous state-of-the-art (SOTA)
models, with an absolute increase of 8% in F1 score.
Given that the test subset, constituting 10% of the
transformed SciFact dataset, had already been utilized
for in-domain evaluation, we incorporated it into the



Table 3: Comparison of the DeBERTaSF model with GPT-4 models.

DeBERTaSF GPT-4 GPT-4 Turbo GPT-4o

NE S C wa NE S C wa NE S C wa NE S C wa

P 0.88 0.90 0.88 0.89 0.85 0.77 0.84 0.82 0.93 0.81 0.65 0.82 0.72 0.91 0.74 0.80
R 0.95 0.88 0.78 0.89 0.80 0.94 0.59 0.81 0.64 0.92 0.81 0.80 0.89 0.80 0.63 0.80

F1 0.91 0.89 0.82 0.88 0.82 0.85 0.70 0.81 0.76 0.86 0.72 0.79 0.80 0.85 0.68 0.79

Acc 0.89 0.81 0.80 0.80

training set. Subsequently, we retrained the DeBERTa
model on 90% of the data from the transformed Sci-
Fact dataset. Upon evaluating the new model on the
HealthVer dataset, we observed a further absolute im-
provement of 4% in the F1 metric (refer to Table 2,
DeBERTaSF−90 model). Furthermore, the exploration
of augmenting the training dataset underscores the
adaptability and robustness of our methodology.

5.3 Comparison with GPT-4 Models

We utilized the same test set as for our in-domain
evaluation – 10% of our transformed SciFact, com-
prising 122 examples and encompassing three classes,
to assess the performance of GPT-4, GPT-4 Turbo,
and GPT-4o in zero-shot mode. The specific prompt
employed for this testing was as follows:

Critically asses whether the statement is supported,
contradicted or there is no evidence for the state-
ment in the given abstract. Output SUPPORT if
the statement is supported by the abstract. Out-
put CONTRADICT if statement is in contradic-
tion with the abstract and output NO EVIDENCE
if there is no evidence for the statement in the ab-
stract.

For all models, the temperature parameter was set
to 0 to minimize randomness and generate the most
deterministic outputs, while the max tokens parame-
ter was set to 350 to allow sufficient context gener-
ation. This approach enabled us to directly compare
the performance of our fine-tuned transformer-based
model with that of the GPT-4 series models in zero-
shot regime under identical conditions.

In our experiments, we observed that our
transformer-based model for claim verification out-
performed GPT-4, GPT-4 Turbo, and GPT-4o (refer
to Table 3). Specifically, our model demonstrated su-
perior performance across various evaluation metrics,
including both accuracy and F1-score. These results
highlight the efficacy of our fine-tuning approach and
the robustness of our model architecture in handling
the complexities of claim verification tasks. The con-

sistent outperformance of our model over the afore-
mentioned state-of-the-art models underscores its po-
tential for real-world applications and further estab-
lishes its credibility within the domain of automated
fact-checking.

Additionally, our model is open-source, providing
transparency and flexibility that are crucial for indus-
tries such as pharmaceuticals and biomedicine, where
stringent process control is required. Unlike closed
models, our open-source solution allows for compre-
hensive customization and verification, ensuring that
the claim verification process adheres to the rigorous
standards necessary in these fields.

6 ERROR ANALYSIS

An error analysis was undertaken to scrutinize mis-
classified claims within the in-domain evaluation sub-
set of the transformed SciFact dataset, leveraging our
top-performing model, DeBERTaSF . As depicted in
Figure 2, a total of 14 claim-abstract pairs were in-
accurately classified, revealing the distribution of er-
rors across different classes. While the model exhibits
commendable performance in the NO EVIDENCE
and SUPPORT classes, it demonstrates a relatively
higher misclassification rate in the CONTRADICT
class, suggesting a focal point for potential enhance-
ment.

The frequent misclassification of the SUPPORT
class as the NO EVIDENCE class primarily stems
from the inclusion of numerical data in the evidence,
encompassing various measures and variations. Addi-
tionally, the model’s inability to recognize abbrevia-
tions of specific terms as equivalent contributes to this
misclassification. Moreover, the presence of intricate
details such as biological processes and chemical re-
actions may confound the model, especially when it
lacks explicit fine-tuning to handle such nuanced in-
formation.

On the other hand, instances where genuine SUP-
PORT claims are incorrectly classified as CONTRA-
DICT pose significant challenges within our dataset.



These misclassifications are often attributed to the se-
mantic complexity inherent in clinical trial data, char-
acterized by complex immunology terminology, de-
tailed descriptions, and intricate comparisons. Fur-
thermore, the model encounters difficulties in discern-
ing the alignment between specific time frames pro-
vided in the evidence and categorizing the claim as
contradictory, even when the evidence unequivocally
supports the claim.

Notably, the CONTRADICT class exhibits the
highest proportion of errors, with instances erro-
neously classified as SUPPORT in 4 examples and as
NO EVIDENCE in 2 examples out of a total of 27
CONTRADICT examples in the test set. In light of
these observations, we will delve into the most prob-
lematic cases within this class.
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Figure 2: Confusion matrix for DeBERTaSF model.

Misclassifying claims from CONTRADICT to
SUPPORT poses significant challenges, particularly
in practical applications. These instances often ex-
hibit surface-level similarities, marked by the pres-
ence of common keywords and phrases, without suf-
ficiently interpreting the underlying semantic rela-
tionships. Consequently, the model may overlook
clear contradictions in the evidence, relying instead
on generalizations stemming from the presence of re-
lated terms. Furthermore, this misclassification is
exacerbated by the semantic complexity inherent in
the content of the evidence, along with the intricate
analytical nuances embedded within scientific con-
cepts. Additionally, challenges arise in comprehend-
ing the context surrounding complex biological pro-
cesses, further complicating the accurate classifica-
tion of claims.

For example, considering the claim ”The genomic
aberrations found in matasteses are very similar to
those found in the primary tumor”, several reasons
contribute to the model misclassifying it as support-
ing the claim:

• The word ”metastases” is incorrectly written as
”matasteses” in the claim, but correctly spelled in
the evidence, which could confuse the model.

• The claim implies a straightforward similarity be-
tween the genomic makeups of metastases and
primary tumors. However, the evidence delves
into the complex evolutionary process and ge-
netic diversity of metastases, discussing timing,
routes of dissemination, and genetic signatures of
metastatic processes.

• The evidence describes metastases evolving in
parallel, while the claim suggests a linear evolu-
tion, a critical distinction the model fails to recog-
nize.

Misclassifying claims from CONTRADICT to
NO EVIDENCE may stem from inadequate repre-
sentation of nuanced contradictions in scientific con-
texts within the training data. The absence of suffi-
cient examples illustrating subtle contradictions may
limit the model’s ability to accurately discern and
classify such instances. Moreover, the presence of
semantic complexity, numerical data in experiments,
variations in experiment timelines, and implicit con-
tradictions further exacerbate the model’s challenges
in inference. Consequently, the model may struggle to
make accurate classifications in scenarios where these
factors interact, leading to instances of misclassifica-
tion within our dataset.

For instance, considering the claim ”The most
prevalent adverse events to Semaglutide are cardio-
vascular.”, several factors contribute to the misclassi-
fication:

• The evidence includes various numerical data
points, such as medication dosages (e.g., 2.5 mg,
5 mg), percentages of change in hemoglobin A1c
levels, body weight changes, and percentages of
patients experiencing adverse events, which poses
a challenge for the model.

• The contradiction is not explicitly stated, as the
claim focuses specifically on cardiovascular ad-
verse events as the most prevalent for Semaglu-
tide. However, the evidence primarily discusses
Semaglutide’s efficacy in glycemic control, men-
tioning adverse events more broadly, with an em-
phasis on gastrointestinal events.

• The evidence contains extensive detail about the
clinical trial’s setup, participant demographics,
dosage specifics, efficacy outcomes, and over-
all adverse events, overwhelming the NLI model,
which needs to filter out irrelevant information to
focus on the claim.



7 CONCLUSION AND FUTURE
WORK

This paper outlines the development and evaluation
of a Verification Engine as part of an open-source
scientific question-answering system. By fine-tuning
models for the Natural Language Inference task on a
processed SciFact dataset, we aimed to provide refer-
enced, automatically vetted, and verifiable answers.

Our in-domain evaluation identified the DeBERTa
model, fine-tuned with 80% of the transformed Sci-
Fact dataset, as the optimal performer with an F1
score of 0.88. Testing this model on the HealthVer
dataset, we achieved an F1 score of 0.44 and accuracy
of 0.50, surpassing previous benchmarks and demon-
strating significant improvements. Further experi-
ments revealed that augmenting the training dataset to
90% led to an additional 4% increase in the F1 metric,
emphasizing the robustness of our approach. Com-
parisons with GPT-4 models in a zero-shot regime
showed our model’s superior performance with a 7%
absolute increase in F1 score to the best-performing
GPT-4 plain model, highlighting its effectiveness in
claim verification tasks.

Our model’s open-source nature offers signifi-
cant benefits for domains like pharmaceuticals and
biomedicine, where rigorous process control is es-
sential. Unlike closed models, our solution allows
for transparency and customization, ensuring adher-
ence to strict industry standards. Overall, our veri-
fication system enhances scientific productivity and
establishes a reliable framework for automated fact-
checking, crucial for maintaining the accuracy and in-
tegrity of scientific information.

Given, that the SciFact dataset contains challeng-
ing examples, we believe that the performance of the
model tested on this dataset may be also underesti-
mated compared to the real-world claims generated
by a large language model. Nevertheless, we aim to
further improve our methodology for claim verifica-
tion in the future. We are planning to conduct research
in the following directions:

• Generate a new dataset for claim verification -
while SciFact is a decent dataset for biomedical
claim verification using literature, we have no-
ticed challenges in the dataset. Some claims may
be short, and unclear without further context and
this context is missing from the labels. We aim to
collaborate with the industry and create a cleaner
dataset, that overcomes these challenges.

• We understand that there are limitations of NLI,
given even the most powerful neural architectures.
Therefore, we aim to create a more comprehen-
sive method, based on the combination of tex-

tual entailment task, text similarity, and chains of
thoughts in fine-tuned large language models.

Enhancement in the dataset and a more compre-
hensive methodology will even further push the state-
of-the-art in this domain and may contribute to the
establishment of trust in generative search engines.
Also, the area of claim verification is important as
it may contribute to the adaptation of generative AI
in the scientific domain, where the adaptation is cur-
rently limited due to the phenomenon of hallucina-
tions, which makes verification of generated texts
time-consuming and generated text unusable.

REFERENCES

Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: A Pre-
trained Language Model for Scientific Text. In Inui,
K., Jiang, J., Ng, V., and Wan, X., editors, Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3615–3620, Hong
Kong, China. Association for Computational Linguis-
tics.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V.,
Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettle-
moyer, L., and Stoyanov, V. (2019a). Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V.,
Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettle-
moyer, L., and Stoyanov, V. (2019b). Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. (2023). Qlora: Efficient finetuning of quantized
llms. arXiv preprint arXiv:2305.14314.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2019). BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In
Burstein, J., Doran, C., and Solorio, T., editors, Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Diggelmann, T., Boyd-Graber, J., Bulian, J., Ciaramita,
M., and Leippold, M. (2021). CLIMATE-FEVER:
A Dataset for Verification of Real-World Climate
Claims. arXiv:2012.00614 [cs].

Guo, Z., Schlichtkrull, M., and Vlachos, A. (2022). A Sur-
vey on Automated Fact-Checking. Transactions of the
Association for Computational Linguistics, 10:178–
206.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K.,
Beltagy, I., Downey, D., and Smith, N. A. (2020).



Don’t Stop Pretraining: Adapt Language Models to
Domains and Tasks. In Jurafsky, D., Chai, J., Schluter,
N., and Tetreault, J., editors, Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 8342–8360, Online. Association
for Computational Linguistics.

He, P., Liu, X., Gao, J., and Chen, W. (2021). Deberta:
Decoding-enhanced bert with disentangled attention.
In International Conference on Learning Representa-
tions.

Jin, Q., Dhingra, B., Liu, Z., Cohen, W. W., and Lu,
X. (2019). Pubmedqa: A dataset for biomedi-
cal research question answering. arXiv preprint
arXiv:1909.06146.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kotonya, N. and Toni, F. (2020). Explainable Automated
Fact-Checking for Public Health Claims. In Webber,
B., Cohn, T., He, Y., and Liu, Y., editors, Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7740–
7754, Online. Association for Computational Linguis-
tics.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H.,
and Kang, J. (2019). BioBERT: a pre-trained biomed-
ical language representation model for biomedical text
mining. Bioinformatics, 36(4):1234–1240.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Malaviya, C., Lee, S., Chen, S., Sieber, E., Yatskar, M.,
and Roth, D. (2023). Expertqa: Expert-curated
questions and attributed answers. arXiv preprint
arXiv:2309.07852.
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