

Research Article

Received: 16 September 2024

Revised: 29 July 2025

Published online in Wiley Online Library:

(wileyonlinelibrary.com) DOI 10.1002/ps.70140

Antimicrobial peptides (AMP)-producing *Bacillus* spp. for the management of *Fusarium* infection and alfalfa growth promotion

Aneta Buntić,^{a*} Aleksandra Jelušić,^b Marija Milić,^c Snežana Dimitrijević,^b Uroš Buzurović,^a Mira Milinković^a and Magdalena Knežević^a

Abstract

BACKGROUND: Alfalfa is the most extensively cultivated forage legume worldwide. Its yield and quality may be affected by various pests and pathogens. Among them, fungal pathogen *Fusarium oxysporum*, the causal agent of Fusarium wilt, is considered as the main threat. The aim of the present study was to investigate the potential of the *Bacillus* spp. isolated from alfalfa rhizosphere to be used as biocontrol agents against *F. oxysporum*, as well as plant-growth promoting agents.

RESULTS: A total of six isolates were identified as *B. halotolerans* LA1K3 and LA1NK3, *B. toyonensis* LA1K2, *B. thuringiensis* LA1K4, *B. megaterium* LA2K1, and *B. safensis* LA1NK1. Suppression of *F. oxysporum* was recorded in a range from 2.86% (LA2K1) to 31.43% (LA1NK3), except for LA1K2. The presence of antimicrobial peptide biosynthetic genes was detected: bacyllomycin and fengycin (LA1NK1); subtilin and fengycin (LA1K2); subtilin (LA1K4 and LA2K1), and bacyllomycin (LA1NK3 and LA1K3) by PCR method. *Bacillus halotolerans* LA1NK3 showed six PGP traits (production of indole-3-acetic acid, siderophores, HCN, protease, cellulase and amylase). Bacterial inoculation increased the germination percentage of infected seeds from 42.85% (LA2K1) to 85.71% (LA1NK1, LA1NK3), as well as the yield of infected alfalfa plants of 186.07% (LANK1), compared to the infected control.

CONCLUSION: The results of this study highlight the potential of rhizosphere soil to harbor beneficial bacterial strains that could be exploited for disease control and plant growth promoting. *Bacillus safensis* LANK1 stood out as the most effective strain in promoting the growth of alfalfa infected by *F. oxysporum* under controlled conditions.

© 2025 Society of Chemical Industry.

Supporting information may be found in the online version of this article.

Keywords: antibiotics; *Bacillus* spp; biocontrol; *Fusarium oxysporum*; PGP bacteria; seed germination

INTRODUCTION

In contemporary agriculture, crop production should be carried out using safe and sustainable methodologies.¹ The utilization of synthetic fertilizers and pesticides has become unsustainable, due to their negative effects on human health and the environment.² Further, this practice contributes to the degradation of soil quality and fertility, resulting in the impairment of its physical, chemical, and biological properties.^{3,4} Consequently, the quest for alternative agricultural solutions has led researchers to direct their attention towards the development of bio-inoculants, a product that adheres to the environment-friendly principles.^{2,5-7} Forage grasslands are essential for livestock feed and are economically significant, covering about 70% of the world's agricultural area and 26% of the total land area.⁸ In 2016, forage plants, along with wine and fruit, made up roughly one-third of the European Union's total crop production.⁹ Commonly cultivated herbaceous legumes include trefoil (*Lotus corniculatus* L.), clover (*Trifolium* spp.), vetches (*Vicia* spp.) and (*Medicago* spp.). Among these, alfalfa (*Medicago sativa* L.) is the most widely grown perennial forage crop, adaptable to both temperate and tropical grasses or as a standalone crop.⁹

Microbial bio-inoculants are most commonly formulated with beneficial soil microorganisms as their primary constituents.^{10,11} This approach offers an environmentally sustainable approach for enhancing soil fertility, crop productivity, and crop quality.^{12,13}

Moreover, the use of bio-inoculants provides a cost-effective alternative and has the potential to substitute expensive and harmful agrochemicals, including synthetic fungicides.¹³ Although the bacteria belonging to *Rhizobium* genus are most commonly used for the promotion of alfalfa growth, it has been shown that these bacteria have low potential for fungal pathogen suppression.¹⁴ On the other hand, the bacteria which are most commonly effective in suppression of plant diseases caused by

* Correspondence to: A. Buntić, Institute of Soil Science, Teodora Dražeresa 7, 11000 Belgrade, Serbia, E-mail: anetabuntic@gmail.com (Buntić)

a Institute of Soil Science, Belgrade, Serbia

b Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia

c Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia