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Abstract: Nano metal oxides (NMOs), with their unique physico-chemical properties and low toxicity,
have become a focus of research in heterogeneous catalysis. Their distinct characteristics, which
can be tailored based on size and structure, make them highly efficient catalysts. NMOs have the
potential to significantly contribute to the degradation of numerous environmental pollutants through
photolytic decomposition. This work comprehensively analyzes the synthesis, catalytic performance,
and applications of photocatalytically active metal oxides, specifically titanium, zinc, copper, iron,
silver, tin, and tungsten oxides. The primary objective is to demonstrate how the effectiveness of
photocatalytic processes can be enhanced and optimized by incorporating metals, non-metals, and
metalloids into their structure and forming heterostructures. Furthermore, the aim is to understand
the underlying process of photocatalytic oxidation thoroughly. Photocatalysis, a promising approach
in advanced oxidation processes, has garnered significant interest in these fields.
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1. Introduction

Nanoparticles (NPs) exhibit distinct physical and chemical properties due to their
large surface area relative to their volume and the impact of their small size at the quantum
level. NPs have diverse applications in electronics, catalysis, energy storage, environmental
remediation, biology, and other fields [1,2]. Nano metal oxides (NMOs) exhibit exceptional
catalytic activity, specific adsorption properties, high electrical conductivity, and magnetic
traits. They are frequently utilized as catalysts in chemical reactions or as sensors in
electronic systems [3–5]. Extensive research into NMOs is leading to innovative methods
for their production [6], new methodologies for their characterization, and uncovering
new uses for these adaptable NPs. With the ongoing progress of technology, NMOs will
probably have a growing significance in influencing the future of many areas.

Advanced oxidation processes (AOPs) are chemical treatment methods for eliminating
organic and inorganic contaminants from water and wastewater. This is achieved by
generating hydroxyl radicals (•OH), which possess strong reactivity and can effectively
degrade complex pollutants such as organic dyes, pesticides, or pharmaceuticals [7–10].
AOPs are highly efficient in breaking down diverse organic contaminants resistant to
removal through traditional treatment methods.

Photolytic advanced oxidation processes (PAOPs) employ ultraviolet (UV) radiation to
produce •OH through the oxidation of molecules like hydrogen peroxide (H2O2) or ozone
(O3). Hydroxyl radicals are generated by activating photocatalysts, such as the widely used
titanium dioxide (TiO2), by UV radiation and initiating the generation of electron–hole
pairs in the photocatalyst, which react with water and oxygen, creating •OH.
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Due to their unique features and high efficiency, semiconductor NMOs have been
extensively studied and utilized in photocatalysis. In Figure 1, band gap positions of
different semiconductors in contact with an aqueous electrolyte are shown.
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The most frequently employed semiconductor NMOs in photocatalysis are titanium
dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe2O3). Several more candidates show
promise for utilization in photocatalysis. They exhibit photocatalytic behavior upon expo-
sure to light, typically in the ultraviolet (UV) spectrum, as they generate electron–hole pairs
upon photon absorption. On the catalyst’s surface, the energized electrons and vacancies
can participate in oxidation–reduction reactions, leading to the decomposition of organic
pollutants, the splitting of water into hydrogen, or other specific chemical transformations.
NMOs have several advantages in photocatalysis, such as a large surface area to volume
ratio, customizable band gap energy, chemical stability, and cost-effectiveness. Recently,
various approaches have been explored to enhance the light to energy conversion efficiency
of NMOs. These include modifying their surface properties, incorporating additional
elements, and fabricating nanostructures to optimize light absorption and charge sepa-
ration. In general, NMOs exhibit significant promise for applications in environmental
remediation, energy conversion, and other disciplines that require efficient and sustain-
able photocatalytic processes. It should be noted that using suspended photocatalysts for
wastewater treatment is common, but it presents numerous drawbacks, such as photocata-
lyst saturation or the necessity for recovery and post-treatment following photocatalytic
procedures, which are expensive and challenging to execute. One approach is to immo-
bilize photocatalysts on supports to address these issues. Using NMO photocatalysts in
the membrane diminishes fouling and improves its effectiveness. Improving membrane
applications by incorporating photocatalysts and membrane technology is linked to the
enhanced hydrophilicity and antibacterial properties of photocatalysts. The decreased
contact angle of the treated membrane indicates the hydrophilic properties of the composite
membrane. The composite membrane’s anti-fouling characteristics promote the develop-
ment of a hydrophilic thin layer via hydrogen bonding, thus preventing the attachment of
fouling materials to the membrane surface [12].

The use of NMO NPs in photocatalysis has attracted considerable attention recently,
leading to increased published literature, including review papers. A bibliometric analysis
has demonstrated the evolution of the importance of this research topic in the literature
over the last decade [13]. This increase is due to the necessity for developing water
purification solutions in response to rising global environmental degradation. Review
articles concentrate on specific components, such as contaminants, particular metal oxide
particles, or innovative materials like BiOBr nanocomposites. Srinisava performed a
comprehensive review highlighting current progress in applying diverse photocatalysts
to remove emerging pharmaceutical contaminants in wastewater [14]. Krishnan et al.
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conducted a study of current research trends in transition metal oxide-based photocatalysis
for the elimination of organic dyes from water [15]. The review included synthesizing
BiOBr-based nanocomposites, the mechanisms that boost photocatalytic activity, and their
present research state, and possible applications in destroying organic pollutants was also
published [16].

This paper thoroughly examines synthetic methods and the catalytic efficacy and uses
of photocatalytically active metal oxides, namely titanium, zinc, copper, iron, silver, tin, and
tungsten oxides. The main goal is to show how the efficacy of photocatalytic processes can
be improved and maximized by integrating metals, non-metals, and metalloids into their
framework, forming heterostructures. Importance is also given to the methods of synthesis
of metal oxide particles, with particular emphasis on the advantages and disadvantages of
individual methods.

2. Synthesis
2.1. Wet Chemical Methods
2.1.1. Sol–Gel Methods

Due to its compatibility with industrial use, the sol–gel method is a widely studied wet
chemical technique for manufacturing NMOs. One of its benefits is the ability to manage
the size and uniformity of NMOs effectively. Nevertheless, this method is constrained
by an organic solvent, which can bring environmental risks, restricted availability, costly
starting materials, and a protracted reaction duration.

Usually, metal alkoxide, the molecular precursor, is dissolved in water or alcohol
and converted to gel by heating and stirring by hydrolysis/alcoholysis. Producing a
homogenous sol from the molecular precursor and its subsequent transformation into a
gel is the most crucial step in the sol–gel process. Most often, the citrate sol–gel approach
is used. Citric acid is a chelating agent that bonds metal cations and lowers reaction
temperatures [17]. The citric acid sol–gel method effectively synthesizes nano mesoporous
La2O3 [18]. The procedure applies to synthesizing binary, ternary, and quaternary metal
oxides in crystalline and amorphous forms. The essential advantage of this method, as
with the more traditional sol–gel process, is the homogeneity of the starting material.

The sol–gel technique provides numerous benefits for the creation of NMOs. It
allows for manipulating the size and shape of nanoparticles, producing uniform and
consistent particles [19]. By using proper solvents and pH in the synthesis of TiO2, a
high photocatalytic efficiency was achieved by band gap engineering [20]. However, it is
essential to note that the sol–gel method may not be appropriate for synthesizing specific
types of nanoparticles or materials [21]. Furthermore, this method has several drawbacks.
The technique can be laborious and require several sequential stages [22].

2.1.2. Hydrothermal Method

The hydrothermal process occurs at high pressures and temperatures above the boiling
point in water-based solutions. NMOs usually form in solution from metal precursors
at 80–200 ◦C. This method allows for tuning the morphology of NPs, improving spe-
cific properties for specific applications. It has been traditionally used to create different
types of ZnO nanoparticles, such as nanorods and nanowires [23]. Hexagon-shaped nano
SnO2 was successfully prepared by a simple hydrothermal route [24], as well as Ga2O3
nano cuboids [25], NiO in the form of nano petals [26], nano-MnO [27], and nano-V4O9
plates [28]. The main disadvantages of this approach are the synthesis at high pressure
and temperatures, the complicated experimental setup, and, most importantly, the limited
potential for scale-up manufacturing.

2.1.3. Coprecipitation

This is an economically efficient and uncomplicated technique that enables the large-
scale manufacturing of NMOs. The process entails manipulating variables such as tem-
perature, pH, solvent selection, and precipitating agent to customize the characteristics of
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the nanoparticles. The process is effective for the synthesis of ZnO and CuO. However, it
may lead to the formation of clumps, necessitating adjustments. CuO nanoparticles with
a high purity level and a crystalline structure were synthesized using CuCl2 and NaOH
as precursors and CH3COOH as a capping agent. The particle size was narrowly from
21.88 nm to 22.14 nm [29]. The synthesis of nano-ZnO powder was achieved via oxalate
coprecipitation methodology. Zinc oxalate dehydrate was converted into zinc oxalate on
calcination at 500 ◦C and into ZnO at 700 ◦C [30].

The cocurrent coprecipitation method was developed as an enhanced version of the
traditional coprecipitation method. This method involves the simultaneous addition of
a metal salt solution and a precipitant while maintaining the constant pH value of the
reaction system. The approach ensures the simultaneous precipitation of multiple cations.
Nano-powder ZrO2, garnet, and perovskite were obtained by cocurrent coprecipitation [31].
Recently, the method was applied to synthesize complex nano-sized Dy2O3–Sc2O3 co-
stabilized ZrO2 powders [32].

The hypergravity coprecipitation technique is used in the industrial production of nano
calcium carbonate, nano iron oxide, and nano cerium dioxide powder. This technique uses a
hypergravity rotating bed to create a chemical reaction between two liquid phases, resulting
in minor films, filaments, and droplets. This process enhances micro-mass transfer and
separation between the metal salt solution and precipitant, forming a protective layer on
the particles. The hypergravity method addresses uneven particle size, inadequate powder
dispersion, and particle clumping, making it suitable for industrial manufacturing [33].

Chemical precipitation is a cost-effective and scalable method for producing NMOs
with controlled structures and morphologies. It effectively synthesizes ZnO and CuO
nanoparticles but may cause agglomeration issues, requiring modifications.

2.1.4. Electrochemical Methods

The increasing interest in electrochemical synthesis for preparing NMOs is motivated
by its simplicity, low-temperature operation, low energy consumption, greater product
purity, and ecological friendliness. Recent advancements in this method have shown the
ability to manipulate the composition and morphology of these structures without the
need for adsorbing capping agents [34]. Electrochemical deposition (cathodic and anodic),
cathodic corrosion, and galvanic exchange reactions are usually applied [35]. Applying a
pulsed potential waveform during Cu2O electrodeposition in alkaline electrolytes enables
the formation of Cu2O films with a controllable morphology without altering the electrolyte
composition or temperature [36]. Cathodic corrosion produces NMOs and mixed NMOs
with an excellent particle size and shape homogeneity, significantly improving photocat-
alyst nanoparticle synthesis procedures. Amorphous TiO2 and crystalline H2WO4 and
BiVO4 nanoparticles were prepared (Figure 2) with a preferential crystallographic orien-
tation starting from the base metal as the reactant [34]. This method is ripe for industrial
scale-up, as it avoids large volumes of organic solvents and significant investments in
heating, cleaning, safety, and disposal issues.

Nanotubular TiO2, possessing an average inner pore width of roughly 110 nm, was
synthesized in a meticulously regulated process using electrochemical anodization in an
aqueous phosphoric acid solution, including hydrofluoric acid [37]. The anodization cell
voltage affects the pore diameter of TiO2 nanotubes, with a voltage of 20 V yielding the
biggest pore diameter and the maximum conversion efficiency under light. Moreover,
hydrofluoric acid has a substantial role in pore formation and dissolution. The produced
materials were assessed as photoanodes for dye-sensitized solar cells utilizing metal ph-
thalocyanine dyes.

Galvanic replacement reaction also yields metal nanostructures with controlled shapes,
morphologies, and compositions [38]. In this process, one metal (often known as a sacrificial
template) is oxidized by the ions of another metal having a higher reduction potential.
The template undergoes oxidation and dissolution by coming into touch with a solution.
Simultaneously, the ions of the second metal undergo reduction and are deposited onto



Catalysts 2024, 14, 771 5 of 31

the external surface of the template. Galvanic replacement reactions provide a simple
and versatile route for producing hollow nanostructures with controllable pore structures.
Nanocrystals of Mn3O4 react with Fe(ClO4)2, forming hollow box-shaped nanocrystals of
Mn3O4/γ-Fe2O3 (“nanoboxes”), which are ultimately transformed into hollow cage-like
nanocrystals of γ-Fe2O3 (“nanocages”) [39]. It is important to note that this approach can
only be used for a limited number of highly reactive metal oxides. Using somewhat raised
temperatures is necessary due to the relatively sluggish kinetics, which might be considered
a disadvantage compared to standard electrochemical approaches.
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2.1.5. Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a flexible method for creating NMOs, offering
benefits like homogeneity, scalability, and control over flakes. However, it has drawbacks
like cost and hazardous gas safety issues. Recently, a graphene coating on nano-TiO2 was
applied using CVD, resulting in a composite material with superior photocatalytic activity
and anti-fouling properties. Graphene improved pollutant adsorption and increased the
TiO2’s charge separation and transportation, resulting in a positive anti-fouling effect [40].
A highly active photocatalyst based on Fe-doped nano-sized TiO2 was successfully synthe-
sized by chemical vapor deposition (CVD) using FeCl3 as an iron source [41]. The growth
of Mo-doped ZnO thin films on glass substrates was achieved by aerosol-assisted CVD,
operating at ambient pressure [42]. Mo is present in the 4+ oxidation state, contributing two
electrons to electrical conduction for every Zn2+ ion replaced in the lattice. SnO2 nanowires
and nanoribbons (doped and pure) have been synthesized using the CVD method and Sn
and SnO2 powders as precursors [43].

2.1.6. Spray Pyrolysis

This method of the production of NMO powder involves consistently blending chem-
ical components in solution to obtain a complex solution, which is then sprayed into a
high-temperature reaction furnace (Figure 3). An ultra-fine MO powder is created in the
furnace through an instantaneous spray pyrolysis reaction. The following are some of this
method’s benefits: (1) the whole process can be made relatively simple by eliminating steps
like the mixing, calcining, and milling of solid powder; and (2) mixing with impurities can
be minimized, and the various pyrolysis reaction conditions can adjust the characteristics
of the produced particles. Many manufacturers—including Merck, Scimarec, and the Amer-
ican company SSC—create beneficial ceramic powders by spray pyrolysis [44]. The method
produced nano-NiO powder using NiCl2 solution as a raw material. The concentration
of the solution and atmospheric pressure influence the powder’s properties. The average
particle size at 700 ◦C is about 20 nm, increasing by temperature [44]. Similarly, spray
pyrolysis can prepare nano-CoO powder with an average particle size below 50 nm from
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CoCl2. The authors reported that as the reaction temperature increases, the crystallinity
gradually increases, yet the specific surface area gradually decreases [45].
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Although spray pyrolysis is a versatile, simple technique, it has certain limitations,
such as requiring the precise control of deposition parameters, the complex reaction mecha-
nism that disables the prediction of the final product, and several environmental concerns
due to solvent emissions. Moreover, equipment, solvents, and energy consumption costs
can be significant, especially for large-scale production.

2.1.7. Microwave Method

Microwave-assisted synthesis (MW) is frequently used to synthesize NPs, ensuring
a uniform heat distribution. This results in regulated physicochemical properties and a
restricted size distribution. Recent developments in MW synthesis have mainly been due
to the introduction of high-tech microwave reactors, leading to rapid advancements in
nanomaterial synthesis [46]. The technique helps produce ZnO-NPs in various sizes and
morphologies. This hydrothermal technique has been successfully used to manufacture
flower-type, needle-type, and spherical-type NPs [47]. By MW heating for 20 min at 180 ◦C,
fine anatase TiO2-NPs with a crystal size of around 7 nm and a specific surface area of
220 m2 g−1 can be produced [48]. A high level of photocatalytic activity has been reported.
Furthermore, the crystallization of nano-CeO2 photocatalysts doped with F and Fe is
possible by an MW–hydrothermal treatment, which enhances photoelectric characteristics,
electron and hole separation, and visible light catalytic activity due to homogeneous crystal
structures and large specific surface areas [49].

The MW technique was recently used to prepare heterostructures like ZnSe/ZnO
(Figure 4), which have a high visible area adsorption efficiency [50]. A facile one-pot
MW-assisted synthesis also obtained metal-free In2S3/In2O3 nanosheets (Figure 5) [51]
effective in photocatalytic water splitting under blue LED light irradiation.

While MW-assisted synthesis is a valuable technique for producing nanomaterials,
it also has disadvantages, including the necessity for real-time reaction monitoring in
MW reactors, which makes reaction parameter optimization difficult, and scaling up for
commercial production.
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2.2. Solid-Phase Synthesis

Solid-phase synthesis obviates the need for a liquid medium to produce NPs gener-
ated from solid precursors, addressing a significant constraint of liquid-phase synthesis.
This solution-phase approach allows for the dependable and reproducible synthesis of
nanomaterials with precise dimensions and configurations. However, the extensive use of
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solvents, capping agents, and additional separation procedures required for this method
leads to the generation of dangerous waste. It limits the scalability of the synthesis due to
its high costs.

Solid-phase synthesis has garnered attention due to its potential to produce NPs with
distinct features. The process often entails mechanical milling and solid-state processes
conducted in a controlled environment, such as an inert gas, to avoid oxidation or contami-
nation. Cooperative coprecipitation in the solid state can occur when precursor solids are
combined and heated to enhance reactivity, crystallization, and sol–gel processes using
solid precursors.

Notable disadvantages include restricted particle size and form control, high energy
demands, challenges in NPs aggregation, and a lengthy synthesis duration. However,
although solid-phase synthesis has several disadvantages, it is nonetheless a valuable, easy,
and cost-effective method for synthesizing NPs. This is especially true when combined
with other techniques or tailored for specific purposes.

Solid-state synthesis yielded a visible light-driven photocatalytic system verified for
model methylene blue decomposition based on ZnO nanoparticles, natural clay, and TiO2
nanoparticles [52]. The synthesis included mechanically grinding the components and cal-
cinating the mixture at 700 ◦C. Ni(OH)2-TiO2 nanocomposites (with a particle size of about
50 nm) with an acceptable degree of dispersion were designed and successfully synthesized
by facile, simple, and eco-friendly solid-state synthesis at room temperature [53].

2.3. Green Methods

Green synthesis processes use plant extrication, plant parts, bacteria, yeast, fungi, and
algae to create nanostructures [54]. These methods are cost-effective, pollution-free, and
easier to process than traditional methods. The green approach reduces environmental
damage and allows for the development of impurity-free nanomaterials. The synthesis of
ZnO-NPs using natural materials, such as microbes and plant parts, is advantageous due to
their phytochemical constituents acting as capping and reducing agents. Natural materials
reduce zinc to the zero-valance state, adding oxide through calcination. Moreover, zinc
ions in natural extract solutions form complexes with phytochemicals, and then through
hydrolysis, ZnO-NPs are formed. Thus, ZnO nanoparticles were effectively manufactured
via a green, straightforward, and environmentally acceptable method, wherein ethanolic
extract of O. europaea fruit waste served as a capping and reducing agent [55].

Microbes are another biological approach for preparing ZnO-NPs. However, this
technique has certain limitations in contrast to plant extract synthesis. It is essential to
screen the microbes, which is a time-consuming procedure [56]. Figure 6 shows a schematic
presentation of the green procedure for designing NPs from plant extract.

An excellent review of the biosynthesis of ZnO-NPs, its challenges, and potential
solutions has recently been reported [56].

The green synthesis of TiO2-NPs has been performed using several plant extracts
(Cicer arietinum L. extract, Aloe Vera leaf extract, Annona squamosa fruit peel, and Acan-
thophyllum laxiusculum). These plants contain a rich source of metabolites, making them
suitable for the rapid synthesis of NPs [57].

Bacterial extracts were employed to synthesize green TiO2-NPs. Bacterial metabolites,
similar to plant extracts, significantly impact the decrease and stability of TiO2. Lactobacillus
sp. and Saccharomyces cerevisiae mediated the biosynthesis of TiO2-NPs with an NP size of
8–35 nm. A biosynthesis mechanism influenced by pH and redox potential is proposed [58].

A recent study utilized bitter olive seeds and a sol–gel approach to make a nanocom-
posite of ZnO−TiO2 doped with iron ions [59]. The nano photocatalyst demonstrated
high efficacy in treating industrial wastewater samples, with a dye degradation efficiency
of over 75%. The device underwent successful semi-industrial testing, demonstrating its
effectiveness under UV and visible light.
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3. Most Common Methods for Enhancement of Photocatalytic Properties
3.1. Doping

Doping is the most frequently used approach for enhancing NMO electrical, optical,
and structural properties and altering their electrical, catalytic, optical, structural, and
magnetic properties to meet specific needs. It can be performed with metals and non-metals.

Many studies are based on doping the host lattice with rare earth element ions, pri-
marily due to their exceptional conductivity, magnetism, electrical characteristics, elec-
trochemical behavior, and luminescence. Among the many rare earth elements, ions like
Sm, Nd, La, Pr, Ce, Gd, etc., have the unique characteristic of having a half-filled shell
with 7f electrons, setting them apart from other elements. Rare earth elements exhibit high
conductivity due to incompletely filled 4f highly localized orbitals and are insulated by
the 5s2 and 5p6 orbitals in the outer shell. Jimkeli Singh and Chinnamuthu utilized the
combustion approach to produce Ce-doped CuO nanoparticles [60]. They found that with
an increased cerium concentration, crystallite size and band gap decreased. Ce dopants did
not affect the peak positions but reduced intensity. Ce (4 mol.%)-doped CuO NPs showed
the highest efficiency in the photocatalytic degradation of rhodamine and methylene blue
under solar irradiation [60].

TiO2’s limited absorption in the visible range is a challenge to overcome. Its wide band
gap absorbs only UV light, making photocatalysts for the whole solar spectrum exciting.
Doping TiO2 with transition metals, such as Fe, Sb, or Cr, can improve its response under
visible light, enhancing photocatalytic efficiency [61]. Plasmonic composites combining
TiO2 with highly dispersed Au nanoparticles can generate OH• radicals under visible light
illumination [62].

Non-metal doping offers advantages over metal doping, such as modifying photocat-
alytic NMOs without thermal instability or poor solubility. Incorporating nitrogen, carbon,
sulfur, fluorine, or iodine, possibly as quantum dots [63], is a more efficient way to lower
the band gap of TiO2 and increase photoactivity [63]. The red shift of the S-doped TiO2
absorption edge was explained with additional extrinsic electronic levels introduced by
sulfur doping. This extends the absorption edge to the visible light region [63].

One innovative application is developing nanocomposites with TiO2 and reduced
graphene oxide doped with nitrogen, which shows excellent results in CO2 photoreduc-
tion [64]. The enhancement of TiO2-based composite with a low carbon-based component
ratio for improved hydrogen generation via photocatalytic water splitting was reported [65].
Nitrogen-doped mesoporous TiO2 (TiO2-N) is a highly advanced photocatalyst with promis-
ing applications, showing a boosted visible light absorption due to shifting 2p orbital
levels [66].
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Recently, a trimetallic Cu-Mn-Fe silica-supported catalyst was prepared via direct syn-
thesis by incorporating magnetic Fe3O4 nanoparticles and active catalytic/photocatalytic
species (Cu and Mn) during the formation of the silica nanoparticles with interparticle
mesoporosity. In the silica support, the Fenton-like activities of the catalyst result from
the catalytic disproportionation of H2O2 by Cu2+ species and separated Mn species. The
catalyst showed a high efficiency in the homolytic cleavage of H2O2 to hydroxyl radicals.
Its effectiveness was further enhanced by the generation of hydroxyl radicals when exposed
to visible light, making it operate as a catalyst similar to photo-Fenton. Magnetic Fe3O4
NPs facilitate the separation of the catalyst/photocatalyst following the reaction without
affecting the catalytic/photocatalytic performance [67].

3.2. Heterojunction

Photocatalyst heterojunctions include amalgamating two or more distinct photocat-
alytic materials to create a junction that improves photocatalytic efficacy in destroying
organic pollutants. The principal impetus for forming heterojunctions is to leverage the
synergistic features of diverse materials, resulting in enhanced efficiency in light absorption,
charge separation, and total photocatalytic efficacy. The fundamental principles of photocat-
alyst heterojunctions encompass charge carrier dynamics: electron–hole pairs are produced
upon light absorption. The junction aids in segregating these charges, diminishing recom-
bination rates and increasing the availability of charge carriers for chemical processes. The
electronic band structures of the constituent components are essential. An advantageous
band alignment (type II, p-n, etc.) can facilitate the effective transfer of electrons and holes
between the elements. Materials frequently employed in forming photocatalyst heterojunc-
tions comprise TiO2, ZnO, CdS, g-C3N4, and metal oxides. Graphene and carbon nanotubes,
as carbon-based materials, can improve charge conductivity. Various techniques can be
utilized to fabricate heterojunctions, including hydrothermal or solvothermal procedures,
sol–gel processes, and chemical vapor deposition.

Photocatalyst heterojunctions are promising for improving photocatalytic processes by
combining semiconductors with different band gaps. They enhance light absorption, charge
separation, and redox reaction kinetics. Type I heterojunctions promote electron–hole pairs,
while type II heterojunctions create an internal electric field, preventing recombination and
promoting redox reactions. Z-scheme heterojunctions combine type I and II, transferring
electrons to holes through a redox mediator (Figure 7). Conventional type II heterojunctions
reduce redox abilities, but Z-scheme heterojunctions have a distinct migration pattern,
addressing these drawbacks while maintaining a high reactive capacity.
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Due to conventional type II and Z-heterojunction limitations, Yu et al. proposed a
novel concept, the S-scheme heterojunction [69]. The S-concept consists of two n-type
semiconductor photocatalysts, PC I, and PC II, representing oxidation and reduction
photocatalysts, respectively (Figure 8b). A band-staggered combination of PC I and PC
II forms the heterojunction. When the semiconductors come into contact, electrons flow
spontaneously, bending photocatalysts B and A downward and upward. The internal
electric field prevents electron migration, enhancing photocatalytic reaction efficiency [70].
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Hierarchical CeO2@Ni1–xCoxSe2 hollow spheres with an S-scheme heterojunction
have been recently reported to exhibit rapid charge/mass transport, exceptional visible
light absorption, superior activity, and excellent stability in photocatalytic CO2 reduction
with CO [71]. The photodegradation at the ZnO heterojunction was more efficient, oc-
curring 300% and 33% faster than the individual Bi2O3 and ZnO catalysts, respectively,
demonstrating a synergistic impact [72].

The selection of a synthesis technique for nano oxide particles is contingent upon
the application’s particular needs, encompassing particle size, morphology, distribution,
purity, scalability, and cost factors. Researchers must evaluate these advantages and
disadvantages to determine the suitable synthesis pathway for their intended use. Synthesis
methods can vary widely, each offering advantages and disadvantages depending on the
application, desired properties, and production scale. The pros and cons of the commonly
applied methods can be summarized as follows. The sol–gel method offers controlled
composition, homogeneity, and scalability for large-scale production. Still, it requires
longer processing times and may require additional heat treatment. Coprecipitation is
more straightforward, cost-effective, and quick but has limitations such as particle size
control and potential contamination. Hydrothermal and solvothermal synthesis offers
a high purity and crystalline quality but requires complex equipment and energy. Ball
milling has scalability and versatility but has limitations like contamination, morphology
control, and aggregation. Chemical vapor deposition produces high-purity and uniform
materials but requires complex setups, high temperatures, and energy. It is suitable for
thin-film applications but may require sophisticated setups and energy.

4. Metal Oxide Nanostructures and Photocatalytic Properties
4.1. TiO2

Because of its cost-effectiveness and structural characteristics, TiO2 (an n-type semi-
conductor) is the most intensively researched NMO for the photocatalytic breakdown of
organic contaminants. With a broad energy band gap ranging from 3.0 to 3.2 eV, TiO2 can
only be stimulated by UV radiation. Hence, the utilization of visible light or sunshine
is restricted.

The mechanisms of degradation of organic pollutants using TiO2 as a photocatalyst
proceed through the following steps: (a) adsorption onto the surface of TiO2; (b) photocat-
alytic degradation by oxidation–reduction reactions, including photogenerated electrons,
holes, and reactive species; and (c) desorption of the degradation outcomes. Organic dyes
undergo degradation through two distinct pathways: (1) the indirect and (2) the direct
pathway [73,74]:

1. The indirect pathway includes the indirect breakdown of dye molecules by gener-
ating potent oxidizing radicals following the absorption of UV radiation (Figure 9a). The
degradation comprises several discrete steps. The first involves photon excitation of an
electron from the valence band (VB) to the conduction band (CB) with energy equal to or
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higher than the band gap energy (Eg), leading to an electron–hole (e+/h+) pair generation
within the TiO2:

TiO2 + hν(UV) → TiO2(e−(CB) + h+(VB))
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Moreover, photogenerated holes at VB produce OH• by reacting with adsorbed
hydrogen formed by water ionization.

H2O(ads) + h+(VB) → OH˙(ads) + H+(ads)

OH• radicals are potent oxidizing agents capable of chemically oxidizing organic
molecules on the catalyst surface without selectivity, converting them into CO2 and H2O
via mineralization. Then, electrons in the CB are captured by adsorbed oxygen, forming
anionic superoxide radicals (O2

−•).

O2 + e−(CB) → O2−(ads)

The involvement of the superoxide ion in the following oxidation processes relieves the
recombination of electrons and holes, thereby preserving the electron neutrality of the TiO2
material. Moreover, the superoxide ions react with hydrogen ions to produce hydroperoxyl
radicals (HO2•), which are then transformed into hydrogen peroxide (H2O2). The hydrogen
peroxide subsequently decomposes to generate reactive OH•. Conventionally, oxidation
and reduction occur on the surface of the photoexcited semiconductor photocatalyst, such
as TiO2.

2HOO−(ads) → H2O2(ads) + O2

H2O2(ads) → 2OH−(ads)

Dye + OH− → CO2 + H2O (dye intermediates)

Dye + h+(VB) → oxidation products

Dye + e−(CB) → reduction products

2. In the direct mechanism (Figure 9b), the excitation of dye molecules by visible light
photons causes them to transition from their lowest energy state to an excited triplet state
(refer to the equation below). The dye species that has been stimulated undergoes electron
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transfer to the CV of TiO2, converting it into a semi-oxidized radical cation (Dye + ϵ).
Subsequently, the confined electrons react with the dissolved oxygen, forming superoxide
radical anions (O2

− ϵ), which produce hydroxyl radicals (OHϵ). The dominant role of
these radicals is to oxidize organic molecules.

Dye + hν → Dye*

Dye* + TiO2 → Dye+ + TiO2
−(CB)

TiO2
−(CB) + O2(ads) → TiO2 + O2

−• (ads)

Dye + O2−• (ads) → Degraded products

Despite its efficacy in photocatalysis, TiO2 has some disadvantages, which are outlined
as follows [75]: (1) limitations in the transfer of electron and hole pairs, with the likely re-
combination of these charge carriers within TiO2 leading to reduced photocatalytic activity;
(2) slow photocatalytic degradation rates due to the low adsorption of organic pollutants on
the TiO2 surface; (3) the aggregation of TiO2 nanoparticles, resulting from their instability,
which prevents effective light absorption at the active sites; (4) increased light scatter-
ing caused by TiO2 nanoparticles, which reduces photocatalytic activity; (5) difficulties
in the recovery and regeneration of the spent TiO2; and (6) the high band gap energy of
the initial TiO2 photocatalyst, which affects its energy efficiency compared to standard
heterostructure photocatalysts.

Diverse methodologies have been explored to augment its photocatalytic efficiency,
such as introducing metals or non-metals or simultaneously introducing many elements.
TiO2 exhibits semiconducting properties because its CB and VB consist of Ti 3d and O 2p
orbitals. Introducing dopants alters its electrical structure, wide band gap, and inherent
characteristics, leading to an expanded photoresponse within the visible spectrum. Both
metal ions and non-metal ions can enhance TiO2 photolytic performance. The doping of
TiO2 with noble metal ions, rare earth elements, and transition metals has been usually
reported. Nevertheless, there have been limited studies on doping TiO2 with alkali metal
ions, mainly due to their unexplored hydrophilicity and photocatalytic activity. Given the
higher cost of transition metals than alkali metals, recent research increasingly focuses on
alkali (Li, Na, K, Rb)-doped TiO2.

Lithium doping decreases the diameters of TiO2 NPs and alters their surface chemical
morphologies and structures. As-prepared photocatalysts with varying LiBr concentrations
show significantly improved methylene blue degradation efficiency and photocatalytic
activity under UV light [76]. Moreover, Li-doped TiO2 NPs exhibit enhanced photocatalytic
activity in methyl orange decomposition, causing the rutile crystal phase formation, lower-
ing the temperature needed to transition from the anatase to rutile phase, and triggering a
mixed-crystal phenomenon [77]. Anatase TiO2 nanotubes can be tailored by Na doping
at different concentrations, resulting in reduced band gaps that match the visible solar
spectrum. These nanotubes show the higher photodegradation efficiency of methylene blue
dye. An increased Ti4+ to Ti3+ reduction plays an active role in improving the photocatalytic
efficiency of the samples [78]. Doping TiO2 with K enhanced its optical properties. The
spectra demonstrated minimal absorption for pure TiO2 film in the visible region. The band
edge of the doped film was moved towards lower energy at 437 nm, increasing absorption.
The decrease in band gap was caused by a shift in the optical absorption from UV to visible
light and an increase in film thickness. TiO2 absorption extended well into the visible area
in the presence of a K dopant [79]. Rb doping enables a decrease in the NPs’ size, improving
the distribution of Rb-TiO2 nanoflakes and inhibiting the recombination of photogenerated
holes and electrons. These result in a degradation rate of up to 93% during one hour [80].

Doping with alkaline earth metals also enhances TiO2 photocatalytic activity. Mg-
doped NPs have superior activity in methylene blue degradation due to reduced band
gap energy and charge recombination [81]. Oxygen vacancies increase with Mg doping,
which is attributed to the difference in electronegativity and ionic radius between Ti and
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Mg. These vacancies act as electron acceptors, reducing the recombination rate of electron–
hole pairs [82]. Ca-doped TiO2 nanofibers improved performance in photodegrading
rhodamine B. The substitution of Ti4+ ions with Ca2+ ions, coupled with the introduction of
oxygen vacancies, reduces the recombination of electron–hole pairs, thereby improving
the photocatalytic efficiency of the nanofibers. Sr-doped TiO2 NPs are efficient in Brilliant
Green degradation under solar light. Sr doping increased the mesoporosity and surface
area, suppressing electron–hole pair recombination.

Non-metals like nitrogen, carbon, sulfur, iodine, and fluorine have been used as
dopants for TiO2, with nitrogen being particularly suitable due to its atomic size and low
ionization energy. Nitrogen doping reduces the band gap and mitigates electron and hole
recombination [83,84]. Sulfur doping enhances degradation efficiency, but the choice of
sulfur sources and preparation methods significantly influences S-doping efficiency [85–88].
Cationic doping replaces Ti with S4+ or S6+, while anionic doping replaces oxygen with
S2–. In cationic form, hydroxyl groups and photoinduced holes contribute to photocatalytic
activity, while in the anionic, electrons and holes contribute equally to the photocatalytic
process [86]. Carbon doping enables a photocatalyst to be effective under visible light.
Introducing carbon enhances photocatalytic activity by creating a new impurity energy
level above the valence band, reducing the band gap and allowing the photocatalyst to
absorb visible light.

The synergism between polyaniline and the TiO2 nanocomposite was examined as an
electrode system for use in dye-sensitized solar cells, both in the dark and under illumina-
tion with various metal phthalocyanine dyes. Cobalt phthalocyanine dye demonstrated a
superior conversion efficiency compared to the other phthalocyanine dyes studied [89].

The immobilization of TiO2 NPs onto suitable materials is also efficient in obtaining
a more effective and stable photocatalyst; owing to their structural characteristics, such
as a high surface area, stability, non-toxicity, and natural abundance, clay minerals are
widely used as supports. The degradation mechanism involves the adsorption of pollutant
molecules, followed by degradation through reactive oxygen species. The nanocomposites’
high porosity and extensive surface area enable the rapid conversion and mineralization
of the pollutants. The interlayer cations in the clay capture electrons while allowing
holes to participate in the oxidation process, reducing the recombination rate and thereby
improving photocatalytic activity compared to pure TiO2. Furthermore, the clay enhances
the reusability of the photocatalyst by facilitating its separation from the reaction mixture.
Various clay minerals, montmorillonite, bentonite, kaolinite, smectite, and vermiculite,
efficiently support TiO2 NPs [90–94].

4.2. ZnO

ZnO (an n-type semiconductor with a band gap of 3.37 eV) is recognized as an ad-
vantageous photocatalyst due to its high stability, non-toxicity, environmental friendliness,
and cost-effectiveness [95,96]. However, its wide band gap and rapid recombination rate of
electron–hole pairs limit its photocatalytic effectiveness. Doping with metals or non-metals,
incorporating noble metals, combining it with narrow band gap semiconductors, or sup-
porting ZnO on various solid materials overcomes these limitations. Ba2+ ions introduced
into the ZnO structure increased the surface area 14 times and improved hydrophilicity [97].
A positive correlation was observed between the surface hydrophilicity and the increased
defectivity of the doped sample (Figure 10). The increased affinity with water is crucial for
the better photocatalytic activity of the doped sample over the undoped one. Moreover,
doping with Ba reduced photo corrosion and enhanced the stability of the sample when
exposed to radiation.
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Doping ZnO with Fe creates sub-band states within its band gap, enhancing pho-
tocatalytic efficiency. The choice of doping element depends on electronegativity and
the difference between dopant ionic radius and Zn2+ radius. Fe is a preferred element
due to its chemical stability and ion radii. Fe-doped ZnO NPs showed efficacy as visible
light-responsive photocatalysts [95,98]. Cr3+ has an ionic radius comparable to that of Zn2+,
which was utilized to synthesize highly efficient photocatalysts [99,100]. The observed
efficacy is ascribed to the existence of Cr3+ and Cr2+, which augment the surface oxygen
vacancies and alter the band gap of ZnO [99,100]. A similar effect was reported for Mn2+

and Mn3+, which substituted Zn2+ within the lattice of ZnO [101]. The presence of Ni2+ in
the ZnO crystal lattice led to a distortion of the lattice due to the discrepancy in ionic radii
between Ni and Zn cations. The distortion increased vacancy defects within the ZnO’s
structure, impacting its optical and photoluminescence properties [102].

A band gap analysis showed a notable band gap (Eg) reduction with increasing Ni
concentrations in ZnO lattice ZnO [103]. The influence of Ni presence on the degradation
of methylene blue under blue laser light irradiation was proved (Figure 11).
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S-doped ZnO has an improved efficiency, which can be ascribed to an increased
presence of oxygen vacancies. The photoactivity of ZnO doped with S and N was higher
than that of C-doped ZnO in the degradation of methylene blue under UV–visible light.
This behavior was attributed to the smaller crystallite size, lower band gap energy, and
broader pore-size distribution resulting from S and N dopants [104].

The coupling of ZnO with other semiconductors to enhance its photocatalytic activity
has also been explored. In this context, p-type oxides such as NiO and CuO are suitable
for forming p–n heterojunctions with ZnO. This approach offers several benefits: (a) a
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reduced recombination rate of electron–hole pairs; (b) the creation of narrow band gaps,
which enhances visible light absorption; and (c) improved reusability with minimal loss
in performance [105]. The primary mechanism for the enhanced photocatalytic activity is
attributed to the more efficient separation of photogenerated charge carriers facilitated by
the internal electric field at the ZnO/NiO interface. Photocatalytic studies conducted by
Chen et al. revealed the formation of an internal electric field at the core–shell structure
of the n-ZnO/p-NiO interface, which significantly enhanced the photocatalytic activity
for the degradation of methylene blue under UV irradiation [106]. CuO/ZnO (Figure 12)
involves various radical reactions, including N-deethylation, decarboxylation, deamination,
dealkylation, chromophore cleavage, and ring-opening in the degradation process of
Rhodamine B. It was suggested that O2•− is a crucial reactive species in the degradation
process [107].
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The immobilization of ZnO NPs on porous materials like cellulose, clays, zeolites,
and graphene oxides significantly enhances photocatalytic activity in reducing organic
pollutants. The porous supports act as electron acceptors, improve adsorption, and generate
oxygen vacancies in the ZnO lattice, extending its activity into the visible light spectrum.
However, the ZnO content should be optimized to prevent aggregation [108–118].

4.3. CuO

CuO (a p-type semiconductor with a band gap of 1.2 to 2.1 eV) is effective in the
visible range of the electromagnetic spectrum; however, its main drawback is the recom-
bination between photogenerated electron–hole pairs, which reduces the efficiency of
photocatalytic reactions. Zn-, Fe-, and Mn-doped CuO nanosheets are promising photo-
catalysts for the photodegradation of several organic dyes, since the doping induces a
shift in the optical band gap, enhances visible light absorption, and reduces electron–hole
recombination [119,120].

Combining CuO with other semiconductors yields an effective heterojunction material
suitable for the photocatalytic degradation of different organic pollutants [121]. CuO/ZnO
nanocomposites with a p–n heterojunction contribute to effectively separating the active
charged ions, substantially reducing the recombination rate. A CuO/NiO photocatalyst
with a p-p isotype heterojunction showed superior degradation activity under visible light
due to superoxide and hydroxyl radicals, which are the primary reactive species involved
in degradation [122,123].

CuO-supported graphene oxide has shown exceptional efficiency in reducing organic
pollutants, thanks to synergistic effects with reduced graphene oxide properties [124]. The
photocatalyst effectively degrades cationic methylene blue and anionic Congo red under
visible light irradiation. Reduced graphene oxide creates a conductive network, enhanc-
ing charge transport. CuO-supported clays and clay minerals (bentonite, kaolinite, and
montmorillonite) efficiently degrade several organics under sunlight [125–127]. Radicals
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•O2− and •OH are vital in the degradation process of cationic dye, methylene blue. The
photocatalytic process involves dye adsorption by montmorillonite and CuO, facilitated by
electrostatic attraction, Lewis’s base interaction, and hydrogen bonding. Various cations in
montmorillonite exchange with cationic dye, and metal complexation occurs between dye
electron-rich functional groups and Al3+ from the montmorillonite skeleton (Figure 13).
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4.4. Fe2O3

There are various kinds of iron oxide, including hematite (α-Fe2O3), maghemite (c-
Fe2O3), and wustite (FeO). The most appealing mineral is hematite, α-Fe2O3. It has a small
band gap energy of 2.1 eV and demonstrates excellent sensitivity to visible light. It is
inexpensive, non-toxic, and chemically stable in water solutions. Its primary disadvantages
are low electrical conductivity and absorptivity, leading to a high charge recombination
and low photoactivity [128]. Additionally, the hydrophobic surface causes hydrophobic
interactions between particles, promoting particle agglomeration and reducing the surface
area [129]. Recently, it was reported that hematite impurities in clinoptilolite-rich tuff are
responsible for the photolytic degradation of methylene blue under visible light [130].

Modifying the surface of Fe2O3 nanoparticles with Ag nanoparticles enhances their
photocatalytic effectiveness in breaking down azo dyes under sunlight irradiation from
20% to 99%. Significantly, the Fe2O3 NPs doped with Ag are exceptionally stable and
environmentally friendly, showing no signs of poisoning or photo-weathering [131]. The
proposed photocatalytic process (Figure 14) involves the role of Ag NPs in capturing the
photogenerated e− by acting as an electron absorber, therefore inhibiting charge conduction
recombination.
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Ti- and Al-doped Fe2O3 exhibit significantly improved photocatalytic degradation
of methyl orange compared to undoped Fe2O3 NPs [132]. The enhanced photocatalytic
performance is attributed to grain refinement and the doping effect of Ti4+ and Al3+.
The Co(II) doping favors the growth of α-Fe2O3 and suppresses the growth of γ-Fe2O3.
The doping narrows the band gap [133]. The doping of Cr(III) in α-Fe2O3 contributes
to the ultrafast degradation of Congo red [134]. The doping of chromium influenced
the significant factors responsible for the photocatalytic activity, the increase in range
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of absorbance, increased e−/h+ pair separation, improvement in the charge transfer
process, and active site formation, which significantly enhanced the degradation process.
The optical band gap energy of α-Fe2O3 NPs slightly decreased after V4+ doping ions.
Weak ferromagnetic behavior due to canted surface spins and the reduced coercivity
and remanence after doping of V4+ ions is attributed to the creation of oxygen defects.
Doped NPs showed a maximum of 92% photocatalytic degradation efficiency within
180 min. This was made possible by traps or defect states induced by V substitution, in
addition to the band gap reduction of α-Fe2O3 NPs [135]. Moreover, incorporating Y3+ ions
triggered the formation of novel energy levels [136]. The presence of d-level electrons in
hematite can elevate the valence top, decreasing the optical band gap and increasing the
absorption intensity of visible light. Excited electrons can readily transition from the VB to
the conduction band (CB) and can be immediately absorbed by the energy level produced
by Y3+. Such action will impede the recombination of photogenerated electrons and holes,
expediting the electron and hole separation process. Furthermore, the electrons will be
transported to the surface of the photocatalyst to undergo a reaction with O2 and generate
•O2− (Figure 15).
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In due course, more h+ ions will remain on VB to engage in reactions with H2O
molecules, resulting in the formation of •OH. This radical is widely recognized as the
primary reactive species in the photocatalytic degradation process, improving the photocat-
alytic efficiency of hematite.

Recently, a theoretical study found that graphene-supported hematite with carbon
vacancies has a nearly zero band gap, facilitating charge carrier transport to the surface.
This improved carrier transport and catalysis benefit water splitting, a higher photocurrent
density, and solar-driven water oxidation reactions [137].

4.5. Ag2O

Silver(I) oxide (a p-type semiconductor) is receiving growing interest among semi-
conducting metal oxides. The narrow band gap (1.2 eV) of Ag2O makes it well suited
for application as a visible light photocatalyst. Yet, its sensitivity to light and fast recom-
bination of electron–hole pairs generated by light significantly restrict its potential as a
stable photocatalyst [138]. The morphology and dimensions of the particles modulate the
photocatalytic characteristics of Ag2O. The particle size can control the surface energy,
resulting in a hydrophobic level or a superhydrophobic particle if the grain dimension
meets roughness requirements. Ag2O’s wettability can be controlled by adjusting its crystal
size during crystallization. Utilizing Ag2O to photodecompose floating organic substances
on the water surface is challenging. To overcome this, an attempt was made to prepare
hydrophobic and oleophilic Ag2O. The floatable superhydrophobic Ag2O photocatalyst
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can effectively treat oil-based pollution and avoid switchable wettability under sunlight
irradiation [139]. Its stable superhydrophobic status under illumination allows it to be used
in various real-world scenarios, including as a high-performance photocatalyst for local
oil degradation.

The crystal study of Ag2O revealed that surfaces (100), (110), and (111) are especially
susceptible to damage, and alterations in their surface shape had a substantial impact on
the oxide’s activity [140]. Its photosensitivity and unstable nature limit the photocatalytic
activity of Ag2O in light, which leads to photoreduction, producing O2 and Ag metal,
diminishing its functionality [141].

Ag2O/rectorite nanocomposites showed remarkable stability in photocatalytic degra-
dation under visible and NIR light. The radical-trapping experiment revealed that •O2

− is
an active radical species participating in the photocatalytic breakdown of contaminants
when exposed to visible light and NIR irradiation. The short energy band gap of Ag2O in
the nanocomposites resulted in a significant absorption of visible and NIR light during the
degradation of dyes. The rectorite integrated into the nanocomposites offered highly effec-
tive active sites for the photo-adsorption process, enhanced electron and hole separation
characteristics, and successfully prevented charge recombination [140].

4.6. SnO2

At ambient temperature, tin oxide is a particular n-type metal oxide semiconductor
with a band gap of 3.6 eV. It combines a high electrical conductivity and optical transparency.
Having its qualities adjustable by size and shape alteration, it offers a broad variety of
applications. It is extensively used as a gas sensor material because of its sensitivity
to different gases [142]. Recently, SnO2 NPs have been used for photocatalysis because
of their lack of toxicity, environmentally friendly nature, and chemical stability [143].
Nevertheless, the effective implementation of SnO2 nanoparticles as a photocatalyst is
hindered by their broad band gap and elevated electron and hole recombination rate. The
limited duration of electron and hole propagation diminishes the effectiveness of SnO2
photodegradation. Due to its broadband gap, it exhibits reduced sensitivity to visible
light-induced photocatalytic activity.

A recent investigation indicated that the photoluminescent properties of small nanopar-
ticles (approximately 6 nm) are affected by the heating regime used during their production.
The properties of SnO2 dried at ambient conditions and SnO2 dried under vacuum exhibit
noteworthy differences. The former demonstrates more significant UV–Vis absorption
throughout the range of wavelengths, a larger Urbach energy, and a smaller band gap,
suggesting a higher concentration of defects (‘Sn’ vacancies). Vacuum drying effectively
enhances the crystallinity of SnO2. Considering its small energy gap and many defects,
the first material demonstrates satisfactory degrading properties of methyl orange dye
when exposed to UV and visible light [144]. Experimental studies show that the structural,
electrical, and optical characteristics of SnO2 alter by introducing foreign atoms (X—Fe, Pt,
Sb, Zn, Bi, Mg, F, Mn, Eu3+, Al, Ti, Co). Doped with various metals and transition metal
ions, SnO2 exhibits exceptional electrical, optical, and electrochemical activities. Surface
flaws occur as a consequence of dopants reducing the band gap. Profound variations in
lattice characteristics and the absorption peak result in substantial differences in X-ray
diffraction patterns between doped and undoped SnO2. Doped SnO2 exhibits improved
absorption capacity in the visible light spectrum due to incorporating flaws and oxygen
vacancies through doping [145]. X-doped SnO2 exhibits a distinct band gap compared to
both pure SnO2 and the dopant (x) because of their conduction band (CB) and valence
band (VB) interaction. The conduction band (CB) and valence band (VB) in dopant and
SnO2 exhibit a band disposition determined by the specific band gap. The band gap of the
x-doped SnO2 composite promotes the efficient partitioning and movement of the electrons
and holes produced by light absorption. Under visible light, the photogenerated electrons
in an x-doped SnO2 nanocomposite are stimulated from the valence band of the dopant
and moved to the conduction band of SnO2 [145]. The photogenerated holes, in contrast,
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are stored in the VB. The extended lifespan of the excited electrons and holes is attributed
to the transfer process (Figure 16B)). An expected consequence of electron transfer from the
CB of SnO2 to the CB of the doping material is inhibiting the reverse interaction between
the photogenerated charge carriers (e−/h+). Recombination significantly reduces the pho-
togenerated charge carriers, leading to photodegradation according to the method. The
prevention of the recombination of photogenerated electron and hole pairs (e−/h+) can be
achieved by doping SnO2. This phenomenon enhances the photocatalytic efficiency of the
photocatalyst when exposed to visible light. Upon rapid reaction, the electrons produce
radicals that subsequently break down or oxidize the organic contaminants [145].
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For Fe-doped SnO2, a recent report shows that doping causes (1) intermediate energy
levels within the band gap created around the lower end of the conduction band; (2) this,
in turn, enhances the separation of carriers and the dynamics of transformation; (3) the
Fe-induced active sites play a crucial role in the adsorption and activation of the organic
pollutant; (4) the oxygen vacancies have a role in both the adsorption and activation of
O2 and serve as dopant centers to decrease recombination and improve the separation of
photoinduced electron–hole pairs [146].

Recent studies have shown that non-metal dopants, including nitrogen, carbon, sulfur,
and fluorine, alter the band gap of SnO2 by replacing the valence band, leading to an
increase in oxygen vacancy defects on the nanoparticles’ surface. Due to relatively small
dimensions, C, F, O, and N diffuse through the lattice interstices and bind to the atoms via
oxidation. Carbon is an ideal choice for non-metal dopants, particularly in semiconductors,
due to its comparatively high mechanical strength, well-developed chemical resistance, and
distinctive electrical characteristics. Moreover, doping can result in an increased generation
of OH radicals, thereby enhancing the effectiveness of organic pollutant breakdown. This
phenomenon can be elucidated because dopants will serve as electron hunters, thereby in-
hibiting the recombination of e−/h+ pairs. Consequently, the hole (h+) of the photocatalyst
will be liberated [147].

Doping the metal oxide with semiconductors of either a narrow or wide band gap
can significantly improve its photocatalytic efficiency. Tin dioxide (SnO2) semiconductors
are extensively employed with TiO2 semiconductors. A composite material consisting
of SnO2/TiO2 nanotubes with different SnO2 concentrations exhibited enhanced methy-
lene blue absorption on the catalyst surface, leading to heightened metal oxide catalytic
activity [148].
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The surface modification of SnO2 NPs can improve dispersion, luminescence, and
mechanical properties. Chemical treatment with coupling agents affects the NPs’ physical–
chemical properties. Modified SnO2 synthesized using grafting polymerization shows
long-term durability and improved dispersion in the organic matrix. Ligand molecules
are capping agents that prevent nanoparticle aggregation and control growth. Coating
metal oxide nanoparticles with polymeric ligands improves their stability due to steric and
electrostatic forces. However, the coating can also obstruct photocatalysis [149].

4.7. WO3

Nano-structured WO3 is a promising n-type semiconductor oxide because of its suit-
able band gap (2.6–2.8 eV), thus making it the second most searched photocatalyst activated
under visible light. Due to its nontoxicity, affordability, high purity, long-lasting stability in
different electrolytes, photosensitivity, and resistance to photo corrosion, it is of increasing
interest. Compared to TiO2 and ZnO, WO3 offers benefits such as a more limited energy gap
and a broader spectrum of light that can be absorbed. Its exceptional response properties
to visible light, which constitutes over half of solar radiation energy, make it an ideal pho-
tocatalytic material. Metal–organic framework (WO3) crystals are found in several forms,
such as monoclinic, triclinic, orthorhombic, tetragonal, and hexagonal phases. At ambient
temperature, monoclinic, triclinic, orthorhombic, and hexagonal phases are stable [150].

WO3 has been extensively studied for its role in removing contaminants, reducing
CO2, and splitting water. However, the precise tuning of performance and morphology is
necessary for specific applications [150]. Designing a WO3-based photocatalyst tailored for
each application could be essential for optimal effectiveness.

Modifying its morphology is crucial to enhancing WO3 efficiency, and a comprehensive
investigation is needed to understand the consequences of WO3 morphological properties.
Morphology plays an essential role in photocatalytic performance, as it exposes active
crystal surfaces, increases surface area, and shortens transport distance. The regulation of
morphology in photocatalytic materials is an effective policy that advances photocatalysis
(Figure 17).

Catalysts 2024, 14, x FOR PEER REVIEW 22 of 34 
 

 

blue absorption on the catalyst surface, leading to heightened metal oxide catalytic 
activity [148]. 

The surface modification of SnO2 NPs can improve dispersion, luminescence, and 
mechanical properties. Chemical treatment with coupling agents affects the NPs� 
physical–chemical properties. Modified SnO2 synthesized using grafting polymerization 
shows long-term durability and improved dispersion in the organic matrix. Ligand 
molecules are capping agents that prevent nanoparticle aggregation and control growth. 
Coating metal oxide nanoparticles with polymeric ligands improves their stability due to 
steric and electrostatic forces. However, the coating can also obstruct photocatalysis [149]. 

4.7. WO3 
Nano-structured WO3 is a promising n-type semiconductor oxide because of its 

suitable band gap (2.6–2.8 eV), thus making it the second most searched photocatalyst 
activated under visible light. Due to its nontoxicity, affordability, high purity, long-lasting 
stability in different electrolytes, photosensitivity, and resistance to photo corrosion, it is 
of increasing interest. Compared to TiO2 and ZnO, WO3 offers benefits such as a more 
limited energy gap and a broader spectrum of light that can be absorbed. Its exceptional 
response properties to visible light, which constitutes over half of solar radiation energy, 
make it an ideal photocatalytic material. Metal–organic framework (WO3) crystals are 
found in several forms, such as monoclinic, triclinic, orthorhombic, tetragonal, and 
hexagonal phases. At ambient temperature, monoclinic, triclinic, orthorhombic, and 
hexagonal phases are stable [150]. 

WO3 has been extensively studied for its role in removing contaminants, reducing 
CO2, and splitting water. However, the precise tuning of performance and morphology is 
necessary for specific applications [150]. Designing a WO3-based photocatalyst tailored 
for each application could be essential for optimal effectiveness. 

Modifying its morphology is crucial to enhancing WO3 efficiency, and a 
comprehensive investigation is needed to understand the consequences of WO3 
morphological properties. Morphology plays an essential role in photocatalytic 
performance, as it exposes active crystal surfaces, increases surface area, and shortens 
transport distance. The regulation of morphology in photocatalytic materials is an 
effective policy that advances photocatalysis (Figure 17). 
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The surface properties significantly influence photocatalytic performance, with ex-
posed crystal planes playing a crucial role in photocatalytic reactions. A near-perfect
octahedron WO3 was synthesized [151]. A thin tungstic acid layer covered this unique
octahedron, significantly affecting its adsorption ability (Figure 18). The bounding {111}
planes are likely not the lowest energy surfaces, and the tungstic acid covering helped
stabilize the octahedron morphology. The as-prepared octahedra exhibits high visible-light-
driven photocatalytic reducibility. They can remove Ag+ ions in the photoprocessing of
wastewater [151].
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Moreover, doping is probably one of the most efficient approaches for enhancing WO3
efficiency, improving light absorption, and reducing recombination rates. The electrocat-
alytic and photoelectrochemical activity of WO3 changes non-monotonically with the Mn
or V doping concentration due to local changes in the reduced nature of WO3 and the
formation of oxygen vacancies. The improved activity arises from fine-tuning the electronic
structure and lessened free energy for atomic hydrogen adsorption. For photoelectrochemi-
cal water splitting, the photocurrent density increases from 0.61 mA cm2 for the undoped
WO3 to about 1.38 mA cm2 and 2.49 mA cm2 for optimal Mn and V doping, respectively.
Mn/V doping transforms WO3 semiconductors into degenerate semiconducting materials
with an improved metallic nature and suitable Gibbs-free energy [152].

Photocatalytic activity can also be enhanced by loading noble metals onto the WO3.
Although Au nanoparticles distributed on the WO3 surface do not alter the selectivity
of methylene blue photodegradation, they break methylene blue at a higher rate than
the original WO3 [68]. The increased photocatalytic activity has been ascribed to the
improved separation of electron–hole pairs following the excitation of WO3 at its band gap.
Photogenerated holes in the CB of WO3 are transported to Au, which has a lower Fermi
level, under visible light. These holes directly contribute to methylene blue’s oxidative
degradation, boosting the photocatalyst’s photocatalytic activity.

g-C3N4/CQDs/WO3, a combination of graphite-like carbon nitride (g-C3N4), WO3,
and carbon quantum dots (CQDs) obtained by Z-scheme heterojunction, was tested for
the depolymerization of lignin. The photocatalyst demonstrated a promising effect on
depolymerizing four types of lignin, while effectively reducing the recombination rate
of photogenerated carriers. The addition of CQDs expanded the light absorption range
and improved the mobility of photogenerated carriers. An innovative approach for the
highly selective cleavage of lignin C-C bonds was designed through heterojunction engi-
neering [153].

A WO3/Ag3PO4 composite showed improved photocatalytic performance and stabil-
ity, ascribed to its direct Z-scheme heterojunction structure and the synergistic interaction
between WO3 and Ag3PO4. This combination enables the effective separation of electrons
and holes and increases the conversion efficiency of light energy. Upon exposure to visible
light, the photoexcited electrons in the CB of WO3 and the retained holes in the valence
band of Ag3PO4 rapidly merge (Figure 19). Furthermore, the photogenerated holes in the
VB of WO3 greatly influence the oxidation reaction [154].
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Figure 19. Proposed mechanism for the photodegradation of methylene blue (MB) and methyl
orange (MO) in the direct Z-scheme charge carrier transfer process at the WO3/Ag3PO4 composite
interface [154].

Bare WO3 displays a low photocatalytic performance because of the poor charge sepa-
ration efficacy of its generated charge carriers. Graphene sheets are a promising material
for charge transfer mechanisms. Reduced graphene oxide (RGO) enhances photogenerated
electron transmission between graphene and MO semiconductors and enhances photo-
catalytic activity. A significant increase in O2 production was reported for RGO/WO3
compared to pristine WO3 [155]. This improved the light absorption capability and utiliza-
tion of electron–hole pairs in hybrid RGO/WO3 nanoplates.

The photocatalytic effectiveness of the ternary photocatalyst (NH2-GO/ZnO-WO3)
is superior in the degradation of several organic dyes when exposed to UV light. The
improved photocatalytic efficiency mainly results from the low recombination rate of
photoactive electron-hole pairs, the small energy band gap, and the extensive surface
area of the ternary composite. Including lone pair electrons in the amino group forms a
negatively charged surface composite. This, in turn, facilitates a favorable interaction with
cationic dyes, which critically enhances the photocatalytic activity (Figure 20). The ternary
nanocomposite NH2-GO/ZnO-WO3 has a suitable photocatalytic activity for degrading
organic dyes often employed in industrial applications [156].
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A summary and comparison of the photocatalytic capabilities of various NMO-based
photocatalysts are presented in Table 1.
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Table 1. Photocatalytic properties of several NMO-based photocatalysts.

Photocatalyst Model Pollutant Operational Conditions (Light Type/C0/Photocatalyst
Amount)

Efficiency,
%

Reaction
Time, min Reference

Rb-doped TiO2 Methylene blue UV light/10 ppm/0.4 g dm–3 97 60 [80]
Ca-doped TiO2 Rhodamine B UV light/1 × 10−5 mol dm–3/1.2 g dm–3 95 100 [81]

TiO2-pillared clay Phenol UV irradiation/50 ppm/2.0 g dm–3 97.4 120 [93]
Fe-doped ZnO Acid orange 7 Visible light/10 ppm/1.5 g dm–3 52 180 [98]

Cu-Ni co-doped ZnO Indigo carmine dye Visible light/100 ppm/1 g dm–3 93.3 60 [96]

CuO Methylene blue
Malachite green Visible light/10 ppm/50 mg 62

70
270
30 [119]

Zn-CuO Methylene blue
Malachite green Visible light/10 ppm/50 mg 66

85
270
30 [119]

Fe-CuO Methylene blue
Malachite green Visible light/10 ppm/50 mg 66

90
270
30 [119]

Mn-doped CuO Rhodamine B Visible light/10 ppm/5 mg 93.8 90 [120]

CuO-ZnO Tetracycline Ciprofloxacin Natural sunlight/25 ppm/30 mg 94
93 50 [121]

CuO-NiO Cefixime Sunlight/15.22 ppm,/1 g dm–3 90 180 [122]
CuO-montmorillonite 30 Methylene blue Visible light/10 ppm/0.02 g dm–3 98 40 [127]

Fe2O3
Orange-II

Reactive red 120 Direct natural solar light irradiation/20 ppm/1 g dm–3 23
20 120 [131]

Co-Fe2O3
Orange-II

Reactive red 120 Direct natural solar light irradiation/20 ppm/1 g dm–3 34
27 120 [131]

Cu–Fe2O3

Orange-II
Reactive red 120 Orange-II

Reactive red 120
Direct natural solar light irradiation/20 ppm/1 g dm–3 81

71 120 [131]

Ag–Fe2O3
Orange-II

Reactive red 120 Direct natural solar light irradiation/20 ppm/1 g dm–3 97
99 120 [131]

Cr-Fe2O3 Congo red dye Sunlight/30 ppm/30 mg dm–3 95.2 15 [134]
Fe-SnO2 Ciprofloxacin UV light/10 ppm/50 mg 98.2 120 [146]

SnO2-clinoptilolite Methylene blue Visible ligh/10 ppm/0.2 g dm–3 45.0 180 [134]

4.8. Kinetics and Thermodynamics of Photodegradation

Kinetic studies on the photocatalytic degradation of organic compounds have been
recorded in the literature, providing substantial evidence to clarify the process and its effec-
tiveness. The Langmuir–Hinshelwood and pseudo-order kinetic models have frequently
been assessed. The L–H model correlates effectively with the literature’s experimental
kinetic data about photocatalytic degradation. The photodegradation of methylene blue
utilizing ZnO nanoparticles [157] indicated that the Langmuir–Hinshelwood model had
a more favorable correlation with the experimental results than other models. The pho-
todegradation of 2-chlorophenol using TiO2 followed the Langmuir–Hinshelwood model,
demonstrating a strong correlation coefficient (R2 = 0.987) [158]. Moreover, the L–H model
offered a more accurate representation than first-order kinetics for the photodegradation of
amoxicillin using activated carbon-supported TiO2 nanoparticles [159]. Tran et al. showed
that only a limited number of research studies have successfully applied the pseudo-second
model for photodegradation to date [160].

The thermodynamic driving force for photocatalysis is the alteration in Gibbs free
energy (∆G) of electron and hole systems in semiconductors due to light stimulation.
Temperature does not influence the Gibbs free energy of semiconductors, so it cannot
elicit the photocatalytic effect. A fundamental relationship between thermodynamics and
kinetics is present in photocatalysis, with external factors such as organic species, light
intensity, and temperature affecting the photocatalytic rate by influencing the thermody-
namic driving force [161]. A recent investigation of the photodegradation of methylene
blue by nanoparticles indicated that the reaction is spontaneous and endothermic [162],
just as in the photodegradation of the dyes rhodamine B and alizarin R. The isotherm
data were most accurately fitted to a Freundlich isotherm [163]. A recent study shows
that photodegradation reactions facilitated by nickel manganite NPs are spontaneous and
driven by entropy, advancing favorably at elevated temperatures [164].

5. Conclusions

Metal oxide-based photocatalyst systems have shown significant progress, but many
challenges and opportunities remain to be explored. Most of the research on the pho-
tocatalysts is focused on powder materials. The synthesis of these powder materials in
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large quantities is complicated, and their respective recycling for real-time applications
is also quite tricky. Moreover, the toxicity of the intermediates in the reaction is not
easily predictable.

A comprehensive understanding of the charge transport process is essential to improv-
ing the activity of NMO-based photocatalysts. Heterogeneous photocatalysis is considered
viable for degrading organic pollutants more effectively than conventional approaches.
However, significant efforts are needed to overcome challenges such as understanding
degradation mechanisms and nanostructure development.

NMO photocatalysts face challenges such as deactivation, cost, scalability, photosta-
bility, and charge carrier dynamics. Regeneration usually requires harsh conditions or
chemical treatments, while synthesis can be expensive, especially for rare or precious metals.
Long-term usability is affected by UV or visible light irradiation, and the fast recombination
of charge carriers can lower efficiency. Accordingly, future perspectives must include
material innovation, doping and defect engineering, advances in synthesis techniques,
and integration with other technologies. Expanding our understanding of photocatalytic
mechanisms at the nanoscale and addressing potential environmental impacts are also
crucial for a successful application. A deep understanding of active sites, carrier transport
paths, and carrier life on surfaces, interfaces, and nanostructures is also necessary.

Finally, a further challenge lies in translating laboratory-level research on NMO NP-
anchored photocatalysts into commercially viable tools to meet the requirements for the
practical use of solar energy in environmental cleaning and renewable energy.
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