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ABSTRACT 

A new mechanism that may account for the onset of chaotic dynamics of earthquake faults is proposed and analyzed. 
The concept is to build on the Burridge-Knopoff model, which integrates the spring-block setup with the Dieterich-
Ruina’s rate- and state-dependent friction law to interpolate for the key aspects of earthquake episodes, including 
the seismic nucleation, fracture propagation and arrest, as well as the rupture healing. Results obtained indicate that 
determistic chaos occur in case frictional parameters exhibit small oscillations about their equilibrium values. Based 
on the construction of appropriate phase portraits, power spectra and the Lyapunov exponents it could be concluded 
that a single time-dependent parameter is sufficient for the chaotic behavior to emerge, while the fully developed 
chaos is found when two perturbed parameters are brought into play.
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1. INTRODUCTION

The issues of seismogenesis, fracture propagation and healing, as well as the complex spatial, temporal and magni-
tude correlations linked to the observed earthquake patterns lie in the focus of an interdisciplinary research. Its ad-
vances are not important only for the scientific part on understanding the driven dissipative systems, but can also 
prove beneficial for their possible practical ramifications. A widely accepted definition states that earthquakes con-
stitute stick-slip frictional instabilities recurring on preexisting faults driven by the slowly moving tectonic plates. In 
particular, each earthquake episode comprises a long-term phase of stress accumulation and a sudden jerky displace-
ment accompanied by stress relaxation. Though there is no comprehensive framework that may account for all the 
related complex phenomena, it has come to light that the frictional laws, entering the earthquake models as “force” 
terms, are likely to be the crucial factor governing the statistical properties of earthquakes. Consistent with this, the 
physics of seismic phenomena is concerned both with the friction and fracture features relevant to the description 
on the microscopic level, and the application of statistical methods providing for the general event distributions on 
the macroscopic level. In terms of the former, the underlying friction laws can become complicated to say the least, 
involving not only the velocity and displacement dependencies, but also being contingent on the previous history 
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(“prestress” from earlier cycles) and the “state” of the contact surface (interfacial layer). As for the event distributions, 
the long-term patterns of seismic activity can broadly be cast in two categories, one referring to periodic or quasiperi-
odic sequences of “characteristic” earthquakes (mainshocks) similar in spatial extent and moment, while the other 
encompasses the aperiodic activity patterns, where a wide range of event sizes can be expected. The rationale for the 
events obeying some systematic behavior often comes down to two scenarios: either there is a multicomponent fault 
with persistent segmentation, or the interaction of several faults may take place, such that the influence of all but one 
(master fault) can be neglected. Regarding the aperiodic behavior, the possible scenarios are more diverse. If the 
faults are made up of multiple segments which are only partially locked, the transfer of stress and its interplay with 
prestress may lead to local events where a single segment or a cluster of segments can take part, as well as the major 
events that break out along the entire seismogenic zone. The more likely setup for aperiodic behavior involves spatial 
variations (heterogeneity) of the friction laws, as patches of materials with different frictional properties may be em-
bedded within an otherwise homogeneous fault. However, for the analysis pursued in the current paper, it is of 
greater importance that the aperiodic sequences of events can be linked to quite different dynamical backgrounds. 
Primarily, one may have low-dimensional data sets that are best accounted for by the deterministic chaos, or there 
may be some high-dimensional data sets, whose generation can naturally be attributed to stochastic (random) pro-
cesses. One should caution for the instances where it may be difficult to distinguish between the stochastically per-
turbed deterministic chaos and the genuine random processes. Apart from the above opposition, a comparably novel 
explanation suggested for the aperiodic behavior, in particular the power-law magnitude-frequency distribution de-
termined by the Gutenberg-Richter law, relies on the concept of self-organized criticality, by which the fault is as-
sumed to consistently operate on a brink of a failure, such that the slow loading enables the system to self-organize 
into a dynamical critical state which lacks any characteristic time or length scale. 

The paper is organized as follows. In section 2, we provide some background on the considered models, discussing 
the phenomena related to the original system and the introduced modifications. In section 3 we formally introduce 
the extended model, assuming that one or two system parameters are periodically perturbed. The section proceeds 
with the detailed local bifurcation analysis, supported by the phase portraits, power spectra and the calculation of 
the maximal Lyapunov exponent, the latter offering evidence for the chaotic behavior in the extended model. In 
section 4 we attempt to provide a seismological interpretation of the obtained results. Concluding remarks are given 
in section 5, where a brief summary of the results is followed by the discussion on possible implications to the ear-
thquake phenomena, outlining the issues for further research. 

2. BACKGROUND ON THE ORIGINAL MODEL AND ITS DERIVATIVES 

In the present paper, we build on the Burridge-Knopoff (BK) model [1], which is counted among the canonical models 
of the fault dynamics. In the simplest configuration, it comprises a single block which is connected to the rigid loader 
plate via a stiff spring and lies on the frictional sliding surface analogous to the fault, see Fig. 1. The dynamics de-
scribed by the usual one-dimensional version is likely to fit best the motion of large earthquakes that span the depth 
of the schizosphere and tend to propagate only in one dimension along the fault. The basic model and its various 
derivatives have proven capable of capturing the nucleation process accompanied by the low magnitude aseismic 
slips localized to the compact “seed” area of the rupture, kinematics of the rupture spreading and the dynamics of 
the fracture healing process. Nonetheless, in recent years the BK model has attracted much attention for efficiently 
reproducing the statistical properties of sequences of recurring earthquake events [2-5]. For this line of research, one 
of the key factors turns out to be the accurate representation of the involved characteristic spatial and temporal 
scales.  In terms of the dynamics displayed, the focus in the BK model lies with the interplay of the driving and the 
friction forces which generates the stick-slip type of motion, paradigmatic for the propagation of earthquakes. In par-
ticular, the earthquake itself corresponds to the ’’slip’’ phase, whereas the ’’stick’’ stage reflects the interseismic period 
of the elastic strain accumulation. For the onset of a slip, the force acting on a block has to overcome the static friction 
with the surface. Nonetheless, in order for the model to exhibit a dynamical instability which allows for the fracture 
propagation, it is essential that the friction force possesses a frictional weakening property, meaning that the friction 
should become weaker as the block slides. 

The formulation of a plausible friction law requires a deeper insight into the physics of an interfacial layer between 
the block and the rough surface, given that the interface bears the local pressures approaching the material yield 
strength, which renders its properties substantially different from those of the surrounding elastic medium. From the 
microscopic point of view, the key ingredient to friction is the notion of asperity micro-contacts, these being the dis-
crete local junctions between the protrusions from the two surfaces brought into contact. The ensemble of asperities 
defines the genuine total area of contact which is much smaller than the nominal geometrical one. The onset and 
cessation of a slip are closely tied to the dynamics of the population of the asperities: the latter are rapidly detached 
just before the slip initiation, whereas the slip arrest promotes their renewal and strengthening. The slip itself is found 
to consist of two distinct phases, sharply distinguished by the characteristic time of duration and the slip rate. The 
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initial, rapid slip phase, which commences immediately after the breaking of the asperities, is associated with an order 
of magnitude larger slip velocity than the proceeding slow slip phase. 

These types of data, collected from a large number of experiments conducted under laboratory conditions within the 
velocity-step, slide-hold-slide and similar setups, have led to several constitutive friction laws, which have been suc-
cessfully applied to explain for the various aspects of the stable and unstable sliding between the elastic solids. Such 
laws include the dependence of the friction strength on the slip velocity, as well as on a single or multiple evolving 
state variables which characterize the dynamics of the asperity contacts. In the present paper, we use the Dieterich-
Ruina rate-and-state dependent friction law [1] which reads: 
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where μ is the friction coefficient and μ0 presents its value at some reference sliding velocity 0v . As for the parameters 
involved, A and B characterize the properties of the material, while L is a characteristic slip distance comparable to a 
typical asperity length. Finally, v  refers to the slip velocity, whereas θ denotes the time-dependent state variable. 
Regarding the second equation, there are two points to be noted: first, θ has the dimension of time and second, it 
increases even if 0v  .  

Figure 1: The Burridge-Knopoff model, represented by a slider-block coupled via a stiff spring to the loader plate. 

Modification presented in this paper addresses the issue of the system’s response to an external perturbation, this 
aimed at showing that even the small-amplitude influences are sufficient to profoundly change the original behavior, 
leading to the onset of chaos. Within this framework, the external perturbations are incorporated implicitly by assum-
ing that they induce small oscillations about the equilibrium values of some of the system parameters. Such persistent 
time-dependent perturbations may be attributed to the Earth tides or the reservoir effects . However, note that the 
persistence of perturbations should be assessed in relative terms, meaning that even the impact of transient influ-
ences whose oscillation period is much shorter than the time they act on the system may still qualify for the provided 
description. In this context, one recalls the dynamical triggering models, which concern the possibility of earthquakes 
caused by the passage of seismic waves from the mainshock on some distant fault. In particular, it has been proposed 
that the stress pulse emitted by the mainshock may increase another fault’s slip speed or enhance triggering by re-
ducing the associated state variable. 

One should note that analysis of the sensitivity of dynamical system to external perturbations is not limited to earth-
quake nucleation models, but also is the frequent research topic in other scientific areas [6]. 

Our numerical simulations of a spring-block model are based on the system of equations coupled with the Dieterich-
Ruina rate- and state-dependent friction law are given by 
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where parameter M is the mass of the block, 0v stands for the reference (normalizing) velocity, and the spring stiffness 
k accounts for the linear elastic properties of the bulk medium. Parameter L corresponds to the characteristic friction 
length, and can be interpreted as the sliding distance for the complete renewal of the population of asperity contacts. 
The parameters A and B are empirical constants, which depend on the properties of the materials involved. In partic-
ular, the parameter A measures the direct velocity dependence (“direct effect”), while A−B is a measure of the steady-
state velocity dependence. Note that the friction-related term is the only source of nonlinearity in the model. 

For the improved insight into the arising phenomena, we adhere to a common practice of converting the initial 
system, such as (2), into the non-dimensional one. This is achieved by introducing the scaled variables θ’, v’, u’ and t’ 
defined as: θ=Aθ’, v=v0v’, u=Lu’, t=(L/v0)t’. Substituting for the original set of variables θ, v, u and t, the system can 
finally be recast in the form:   
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where α=(B−A)/A measures the sensitivity of the velocity relaxation, β =(kL)/A is the nondimensional spring constant, 
and η = (k/M)1/2(L/v0) is the nondimensional characteristic frequency. 

3. RESULTS

The original model (3) can be modified by assuming the time dependence of the parameters α and β in the following 
way: 
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where α(t), β(t) are the positive periodic functions of time: 
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where δα, δβ, ωα, and ωβ present the constant oscillation amlitudes and the angular frequencies (δα≤α, δβ≤β). Let us 
proceed with the bifurcation analysis of the model (4) if one or two of the underlying parameters are perturbed, while 
the remaining ones are held fixed at values admitting the fixed point (Fig. 2). 

Figure 2: Bifurcations of the system (3) (or (4) if δi=0 is set) under variation of one of the parameters α, β and η. At 
each instance, the parameters held constant are awarded values that admit the fixed point,        

α= 0.34, β= 0.49  and η = 0.80 

Furhter we exmaine the scenario if only a single parameter, α or β, undergoes small oscillations, while the other para-
meter is fixed. It turns out that one may observe chaotic behavior irrespective of which of the parameters is perturbed. 
The typical phase portraits and the power spectra for the corresponding time series are displayed in Fig. 3 (a-b). The 
emergence of chaotic behavior in these two instances is supported by calculating the maximal Lyapunov exponent, 
see Fig. 4, which indicates convergence to values above zero. 
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Figure 3: The left column shows the projections on the (u,v) plane of the typical orbits of the system (4), whereas the 
right column  displays the corresponding power spectra obtained for the v(t) time series. Each row illustrates the 

system's behavior when the different parameter is periodically perturbed. The perturbation amplitudes are set to:    
(a) δα=0.4, ωα=0.42 (b) δβ=0.5, ωβ=0.42 while the equilibrium values of the parameters admit the limit cycle

(α=0.4; β=0.5;η=0.8) 

Figure 4: Calculation of the maximal Lyapunov exponent for simulated time series of the block’s velocity for  δα=0.4 
in (a) and δβ=0.5 in (b), respectively. The parameter values correspond to the plots displayed in Figures 4(a) and 4(b). 

It is demonstrated that the maximal Lyapunov exponents converge well to λ=0.095 in (a) and λ=0.336 in (b).  

Further we proceed by examining what occurs if both α and β exhibit small oscillations. For such a scenario, it turns 
out that the fully developed chaos can indeed emerge, with an instance of the typical phase portrait shown in Fig. 
5(a). It is interesting that the inference on the onset of chaos holds true even if the equilibrium parameter values are 
consistent with the fixed point of the unperturbed system. The conclusions on the character of the observed behavior 
rely on the power spectrum for the time series v(t), provided in Fig. 5(b), and are further corroborated by the positive 
value of the maximal Lyapunov exponent, as indicated in Fig. 6. Note that the latter value is significantly larger than 
in the previous two cases where only a single parameter was perturbed. 
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Figure 5: (a) Projection on the (u,v) plane of the typical chaotic orbit of the system (4). The results are obtained for 
the perturbation amplitudes δα=0.29 and δβ=0.4, while the other parameters are set so that the unperturbed system 

would lie in the fixed point: α=0.29, β=0.5,η=0.8. (b) The power spectrum for the time series v(t). 

4. RELATION TO SEISMOLOGY 

Though the studied spring-block model provides a greatly simplified picture of the seismic source, it may still shed 
some light on the mechanics of the fault system. Due to simplifying assumptions, the model is not intended to 
simulate the behaviour of any real fault, but can highlight the possible mechanisms contributing to the onset of 
complex behavior observed in the fault dynamics. In these terms, although the parameter values used in this paper 
are exclusively of theoretical character, without looking for the explicit relation with the observed data concerning 
the laboratory and natural fault zones, one may attempt to provide a qualitative interpretation of the obtained results. 
Our analysis involves three main parameters, namely α, β and η. Parameterη, representing the nondimensional char-
acteristic frequency, incorporates the dependence on the parameters with constant values for the observed model: 
spring stiffness (k), mass of the block (M), critical slip distance (L) and the reference velocity (v0). This is the reason 
whyη is held constant during the analysis. On the other hand, parameter α is defined by the ratio of parameters B-A 
and A. Parameters A and B stand for the material properties of the rock, which rely upon the rock type and tempera-
ture. These parameters also change during the slip: parameter A reflects the rise of the friction coefficient, when the 
block is subjected to a sudden velocity increase. For every successive slip phase, this parameter gains a new value, 
accounting for the different nature of the contact between the block and the rough surface. In addition, A enters the 
parameter β, defined as the nondimensional spring constant. Parameter B-A is directly connected with the amount of 
stress released during the ‘’slip’’ phase. In our analysis, we first simulate this dependence by assuming that parameters 
α and β are periodically time-dependent, without relating to specific rock type and the temperature range. The results 
obtained indicate that for small perturbations near the fixed point, the system exhibits rich behavior, implying the 
sensitivity of the observed system on the material properties A and B. In other words, a transition to chaos is observed 
by simply changing the value of the parameters A and B. In an earthquake analogy to the single block, this suggests 
that the potential transitions to chaos are essentially controlled by the ratio of the parameters (B−A) and A, as well as 
the critical length L derived from the friction law, but are independent of the elastic feature of the medium surround-
ing the fault, which is idealized by the parameter k.  

 

Figure 6: Calculation of the maximal Lyapunov exponent for the simulated time series of the block’s velocity at 
δα=0.29 in (a) and δβ=0.4 in (b), respectively. The other parameter values coincide with those in Fig. 5(a). The maxi-

mal Lyapunov exponent is seen to converge well to λ=1.068 
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5. CONCLUDING REMARKS

In principle, three dynamical paradigms are identified as likely to give rise to aperiodic behavior in the earthquake 
fault dynamics. These include the deterministic chaos, the stochastic processes and the self-organized citicality, none 
of which is at the current stage given advantage over the others. What makes the scenario involving deterministic 
chaos distinct is that it raises the possibility of the system being sensitive to small perturbations in the intrinsic or the 
external conditions. The purpose of this study has been to suggest the mechanisms that one may build into the mi-
nimal model of fault dynamics capable of exhibiting the chaotic behavior. The term „minimal“ alludes to the point 
that even the fault with rather simplistic monoblock structure may still generate complex patterns of seismic activity. 
The adopted approach lies at variance with most of the models known so far to admit the aperiodic dynamics, given 
that they commonly invoke multicomponent faults composed of regions which are only partially locked or refer to 
spatially heterogeneous faults having sections with the different frictional laws intermixed. In particular, we have de-
monstrated that certain modifications, reflected in introducing the novel, small magnitude variables into the original 
BK monoblock model, may be sufficient to profoundly influence the system dynamics, eventually leading to the onset 
of the chaotic regime. In each instance, the observation of chaos is verified by determing the power spectra of the 
underlying v(t) time series, this corroborated by calculating the corresponding maximal Lyapunov exponent. 

The focus of the present paper has been on the effects of external perturbations, which, due to low amplitude, may 
be incorporated implicitly into the model, having them induce small oscillations of the parameters α and β about 
their equilibrium values. In case of any single perturbed parameter, while the remaining subset is held fixed, one is 
unable to find the fully developed chaos. However, we have witnessed the latter once allowing for both α and β to 
be time-dependent. Note that the fully developed chaos is characterized by the continuous power spectrum of the 
appropriate time series and the leading Lyapunov exponent significantly above zero.  
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