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ABSTRACT 

 

In the present paper we propose a new artificial neural network model for the estimation of coal cutting 

resistance and excavator performance as a nonlinear relationship between the examined input (excavator 

movement angle in the left and right direction, slice height and thickness, coal unit weight, compressive 

and shear strength) and output factors (excavator effective capacity, maximum 

current/power/force/energy consumption, linear and areal cutting resistance). We analyze the dataset 

collected from three open-pit coal mines in Serbia: Field D, Tamnava Eastern Field and Tamnava Western 

Field (all part of the Kolubara coal basin). The model is developed using a multilayer feed-forward neural 

network, with a Levenberg-Marquardt learning algorithm. Results of the preformed analysis indicate 

satisfying statistical accuracyof the developed model (R>0.9). Additionally, we analyze the individual 

effects of input factors on the properties of coal cutting resistance and performance of the excavator, by 

invokling the multiple linear regression. As a result, we single out the statististically significant and 

physically possible interactions between the individual controlling factors  
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INTRODUCTION 

 

The rapid development of artificial intelligence (AI), its increased availability, and the possibility of use 

without having demanding processing units leads to the application of AI-based methods in almost every 

aspect of human activity. The main advantages of involving AI-based methods lie in their convenient 

use, satisfying accuracy and the essential black-box approach, i.e. one does not need to know all steps 

leading from input parameters to the outputs, but it is sufficient to repeat ''experiments'' with different 

settings of AI-based model in search of the best solution. Results obtained in this way are not always 

completely accurate, but their accuracy is satisfying for preliminary assessment of the processes or the 

features being studied. Regarding the mining industry, according to [forbes.com], AI-based methods 

lead to the so-called ‘’smart mining’’, with the primary aim of reducing the enormous costs in the mining 

industry 1.  

 

Regarding the mining industry, AI-based methods lead to the so-called ‘’smart mining’’, with the 

primary aim of reducing the enormous costs in the mining industry [1]. For instance, estimations made 

by McKinsey [2] are that by 2035 the application of AI in mining will save between $290 billion and 

$390 billion annually for mineral raw materials producers. AI-based intelligence systems are being 

widely used by mining companies, helping them: acquire data, convert data, transmit, analyze, and 

visualize data. Moreover, Karatzoglou points out that future ore exploration will be more complex since 
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almost entire deposits that are on the surface or relatively easily accessible are nearly exhausted [3]. So, 

ore bodies that will explore in the future are likely to be deep and hidden by thick overburden, probably 

interacting with significant geological structures (including faults, and similar). In such cases, AI-based 

methods could be very useful, since they can ‘’learn’’ from experience. Additionally, it is expected that 

the use of AI-based methods will increase the safety of the mine workers (by accurately predicting 

dangerous scenarios) and even lead to the use of autonomous mining vehicles, which could be remotely 

controlled and operated. 

 

In the last decade, there has been an increased application of artificial intelligence methods in the 

planning, design, and analysis of processes and parameters related to the coal excavation process. 

Srivastava and Pradhan [4] reported that mining-related complex operations, computations, and analyses 

in India have become easier and more accurate with the use of AI-based methods. Wang et al. wrote 

about the ''Chinese mode'' of intelligent mining in underground coal mines [5].  

 

The use of AI-based methods and solutions leads to the top-level architecture of 5G+ intelligent coal 

mine systems that combines intelligent applications such as autonomous intelligent mining, human–

machine collaborative rapid tunneling, unmanned auxiliary transportation, closed-loop safety control, 

and intelligent ecology. Furthermore, according to Azhari et al. in the last five years, deep learning has 

been implemented to solve a variety of problems related to mine exploration, ore and metal extraction, 

and reclamation processes [6].   

 

In coal mining, artificial neural networks (ANN) are by far the most used AI-based method in the last 

10 years for solving different tasks in engineering practice.  Yang and Xiaohong used artificial neural 

networks (ANN) to develop a quantitative prediction method for mining subsidence and horizontal 

movement under thin bedrocks and thick unconsolidated layers [7]. Results obtained indicated that the 

proposed model provides sufficiently accurate data when compared to the measured values, with a 

relative error in the range of 1.034 – 6.571% for subsidence, and 1.160 – 6.233% for horizontal 

movement.  

 

Panigrahi and Ray used the ANN approach to develop a new electrochemical method (wet oxidation 

potential technique) for determining the susceptibility of coal to spontaneous combustion [8]. The model 

based on the ANN approach provided satisfying statistical accuracy, with R>0.9 and MSE=0.66-2.07 

(target values were in the range 0-9). Mlynarczuk and Skiba used pattern recognition techniques and 

ANN to create an automatic process of classification of maceral groups and mineral components of coal 

[9]. Results obtained indicate over 97% of correct classifications of maceral groups and mineral 

components.  

 

Wilkins et al. applied convolutional neural networks to identify microseismic events at the coal mine 

[10]. The developed model could be used to reveal, classify and locate microseismic events, with 

satisfying precision. Moreover, their research indicated that the created model was more successful than 

humans at correctly identifying both true events and false-positive events.  

 

Jiang et al. used graph convolutional networks to develop a multi-point relationship fusion prediction 

model of mining-induced surface subsidence, based on the surface deformation data obtained from 250 

InSAR images [11]. Qi et al. applied a radial basis function neural network for the estimation of the 

spatial distribution of soil organic carbon in coal mining subsidence areas [12]. Results obtained indicate 

that the application of neural networks provides statistically more accurate results compared to direct 

kriging methods (correlation coefficient 0.81 compared to 0.44, respectively).  

  

In the present paper, we apply a three-layer feedforward multiple perceptron neural network, to estimate 

a series of parameters of the bucket-wheel excavator performance and coal cutting resistance. The model 

is derived for the case study of three coal basins in Serbia: Tamnava western field, Tamnava eastern 

field, and Field D (all parts of the Kolubara coal basin). As a result, the model provides an estimation of 

many excavation and resistance parameters with satisfying accuracy, and it could be used for the first 

preliminary assessment of excavator consumption and coal resistance to cutting.  
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The paper is structured as follows. In Section 2 we provide brief information on the data analyzed and 

applied methodology. In Section 3 results of the performed analysis are presented, including the 

estimation of the statistical accuracy of the developed model and the explicit mathematical expression. 

Section 4 is devoted to the conclusions and directions for further research.  

 

 

DATA ANALYZED AND METHODOLOGY 

 

We analyze the following properties of the excavation process (using a bucket-wheel excavator) 

recorded at Tamnava Eastern Field, Tamnava Western Field, and Field D (Kolubara coal mine in Serbia): 

• Excavator effective capacity Qef (m3/h) 

• maximum current consumption Imax (A) 

• maximum power consumption Nmax (kW) 

• maximum force consumption Pmax (kN) 

• maximum energy consumption Emax (kWh/m3) 

• excavator movement angle in the left direction φL (°) 

• excavator movement angle in the right direction φD  (°) 

• slice height h (m) 

• slice thickness s (m) 

 

Also, the following properties of coal are examined: 

• maximum linear cutting resistance KLmax (N/cm) 

• maximum areal cutting resistance KFmax (N/cm2) 

• coal unit weight γ (kN/m3) 

• coal compressive strength σp (MPa) 

• coal cohesion c (MPa) 

• coal angle of internal friction φ (°) 

 

Data were collected [13]  for the case of coal excavation with a bucket-wheel excavator of the same type 

SchRs630. 

 

The aforementioned data were further used to develop a prediction model, as a nonlinear function of the 

following output units: Qef, Imax, Nmax, Pmax, Emax, KLmax, and KFmax, on the following controlling factors: 

γ, σp, c, φ, φL, φD, h and s. ANN approach included a fast-forward three-layer network with a 

backpropagation Levenberg-Marquardt (LM) algorithm with a sigmoid activation function. The LM 

learning algorithm is the fastest method for training moderate-sized feed-forward neural networks. We 

develop an ANN model with 10 hidden neurons (Figure1).  

 

 
 

Figure 1. The architecture of the developed ANN model. 

 

The possibility of overfitting was excluded by confirming that any increase in accuracy over the training 

data set yields a rise in accuracy over a validation data set. In particular, mean-squared error (MSE) 

should be saturated with the increase of epochs for training and validation data. The total data set has 

been divided as follows: 65% for training (128 recordings), 20% for validation (40 recordings), and 15% 

for testing (30 recordings).  
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DEVELOPMENT OF ANN MODEL 

 

As a result, we developed a unique ANN model, by establishing a nonlinear correlation between the 

outputs Qef, Imax, Nmax, Pmax, Emax, KLmax, and KFmax, and inputs: γ, σp, c, φ, φL, φD, h and s, in the following 

general form: 

 
[𝑜𝑢𝑡𝑝𝑢𝑡𝑠] = 𝑡𝑎𝑛𝑠𝑖𝑔{[𝑎] + [𝑏] ∙ 𝑡𝑎𝑛𝑠𝑖𝑔{[𝑐] + [𝑑] ∙ [𝑖𝑛𝑝𝑢𝑡]}                                                             (1) 

 

where tansig[N] is a neural transfer function, that takes a matrix of net input vectors, N, and returns the 

S-by-Q matrix, A, of the elements o N squshed into [-1 1]. It is defined as: 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑁) =
2

1+𝑒−2𝑁 − 1                         (2) 

 

and it is mathematically equivalent to tanh(N).  

 

Parameters of Eq. (1) are given as matrices in the present case: 

 

[𝑜𝑢𝑡𝑝𝑢𝑡𝑠] =

[
 
 
 
 
 
 

𝑄𝑒𝑓

𝐼𝑚𝑎𝑥

𝑁𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

𝐸𝑚𝑎𝑥

𝐾𝐿𝑚𝑎𝑥

𝐾𝐹𝑚𝑎𝑥]
 
 
 
 
 
 

,  [𝑎] =

[
 
 
 
 
 
−1.90
0.26

−0.53
0.61

−0.39
1.25
0.08 ]

 
 
 
 
 

,   [𝑐] =

[
 
 
 
 
 
 
 
 
−0.810
0.067
1.488

−0.272
1.342
0.839

−2.319
0.961
2.743
1.895 ]

 
 
 
 
 
 
 
 

,  

 

[𝑏] =

[
 
 
 
 
 
 

0.05
−0.06
0.003
−0.23
0.41
0.06
0.09

−0.05
0.018

−0.018
0.336
0.048
0.160

−0.236

−1.080
0.033

−0.146
0.544

−0.079
−0.128
0.156

0.139
0.337

−0.071
−0.239
0.587

−0.485
0.020

0.651
1.775
0.108

−1.204
−0.306
1.240

−0.490

1.718
−0.150
−0.040
−0.317
−0.113
−0.034
−0.306

−0.659
−0.291
−0.064
0.150

−0.380
0.171
0.283

0.783
−0.608
0.206

−0.175
−0.324
0.015
0.120

1.847
1.227
0.459

−1.015
0.334
0.845

−1.502

0.597
−0.105
−0.889
−1.030
−1.035
−1.552
0.572 ]

 
 
 
 
 
 

,  and 

 

 

 [𝑑] =

[
 
 
 
 
 
 
 
 

2.968
2.347

−0.499
0.305

−0.357
−0.309
−0.327
0.215
0.852
0.959

−0.629
1.141

−0.225
−0.155
0.338

−0.333
−0.129
1.701

−1.023
2.373

−1.964
−0.658
0.966
1.475
0.934

−0.131
0.485
1.571
0.539

−1.941

−1.398
−2.514
−0.922
0.429

−0.029
−0.522
−0.717
−0.660
−0.115
−0.287

−0.793
1.158

−0.487
1.199
0.172

−0.621
−0.532
0.647
1.322
0.939

1.124
−1.487
0.289

−1.020
−0.074
0.966
0.981

−1.260
1.149
0.005

0.868
1.165
1.272
1.218
2.953
1.611
1.124

−1.067
−2.729
−1.214

−1.806
−0.969
−0.254
−1.031
0.016
0.015

−2.415
0.022
1.871

−0.128]
 
 
 
 
 
 
 
 

. 

 

Developed model (1) provides statistically accurate results, as shown in Figure 2. In all phases of model 

development, satisfying estimation accuracy was achieved with a correlation coefficient higher than 0.9. 

The distribution of residuals is given in Figure 3. According to different normality tests, residuals do not 

follow a normal distribution, Figure 4. Results of the runs test (p<0.05) also indicate the absence of 

randomness in the analyzed data. 

 

The possibility of overfitting was excluded by confirming that any increase in accuracy over the training 

data set yields a rise in accuracy over a validation data set. In Figure 5. we plot the gradient values, mu, 

and validation fail. The values of gradient, mu, and val fail were 10−7, 1010, and 6 at 15 epochs, 

respectively, indicating that the ANN model was well-trained. 
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Figure 2. Regression plots for model (1): (left) training set, (middle) validation set, (right) testing set. 

 

 
 

Figure 3. (a) Training evaluation for development of model (1), (b) distribution of residuals of model (1). 

 

 
 

Figure 4. Results of normality tests for residuals: (a) Anderson-Darling test,  

(b) Ryan-Joiner test, (c) Kolomogorov-Smirnov test. 

 

 
 

Figure 5. (a) Gradient values, (b) mu and (c) validation fail for the trained ANN model. 
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INDIVIDUAL EFFECTS OF INPUT FACTORS 

 

The effect of input factors on each output unit is assessed by invoking the multiple linear regression 

method. Explicit mathematical expressions are provided in Tables 1-2. 

 
Table 1. Statistically significant individual factors and two-factor interactions on Qef, Nmax, Pmax, and Emax. 

 

ln (Qef) 1/(Nmax) Sqrt (Pmax) ln (Emax) 

0.008 γ -3.6E-05 γ 0.29 γ -0.05 γ 

-7.52 σp 0.000237 σp -31.69 σp 0.039 σp 

-0.26 φ -0.00308 c 54.36 c -3.5 c 

-0.12 φL -1.8E-05 φL 0.26 φL -0.004 φ 

0.0007 φD 4.37E-05 φD -0.31 φD 0.026 φL 

-0.81 h -0.00177 s 18.7 h -0.022 φD 

5.05 s -0.00064 σp x s -7.65 s 0.132 h 

0.14 σp x φ 0.00046 c x h -0.037 σp x φL 0.167 γ x s 

0.019 σp x φL 4.57E-05 φ x s 0.041 σp x φD -0.379 σp x s 

-0.363 σp x φD 5.85E-08 φL x φD 2.18  σp x s 0.0002 φL x φD 

-0.037 c x φL 1.03E-05 φD x s 0.02 φL x h -0.008 φD x s 

0.0014 φ x φL   -0.015 φD x h 0.52  * h * s 

-0.0002 φL x φD   4.15  σp
2   

    0.45  s2   

 

 
Table 2. Statistically significant individual factors and two-factor interactions on Imax, KLmax, and KFmax. 

 

ln (Imax) ln(KLmax) ln (KFmax) 

2.66 γ 0.39 γ 0.39 γ 

-3.06 σp 5.99 c -0.126 φ 

-0.29 c 0.073 φL 0.07 φL 

1.81 φ -0.052 φD -0.026 φD 

-0.05 φL -2.15 s 1.27 h 

0.05 φD -0.001  σp x φL -0.013 σp x φL 

3.45 s 0.0086  σp x φD 0.01  σp x φD 

-1.43 γ x c -0.53 c x h -2.40 c x s 

0.01 σp x φL 0.0039 φL x h 0.005  * Fi L * h 

-0.01 σp x φD -0.0045 φD x h -0.007  * Fi D * h 

1.11 c x h -0.005  φD x s -0.007  * Fi D * s 

-0.09 φ x h 0.26  * h * s 0.447  * h * s 

-0.18 h x s 0.26  σp
2 -0.161  h2 

0.33 σp
2 0.16 s2   

5.68 c2     

-0.019 φ2     

-0.00005 φL
2     

-0.18 s2     

 

Statistically significant individual factors affecting Qef are presented in Figure 6. One can clearly single 

out two groups of parameters (input factors) that have different effects on Qef,Figure 6:  

• slice thickness has the most significant predominant influence on Qef. It is expected that the 

increase in slice height will lead to an increase in Qef. 

• minor effect comes from the following group of parameters: 

o unit weight, compression strength, and cohesion have qualitatively the same effect, which 

could be described as a minor positive (increasing) influence, meaning that the increase of 

these parameters leads to the increase of Qef.  
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o Slice height and excavator movement angle in right and left directions have minor, but 

negative (decreasing) effects on Qef, meaning that the increase of these parameters leads to 

a decrease in Qef.  

 

 
 

Figure 6. Effect of individual factors on Qef: (a) Qef as a function of γ, σp and φ; (b) Qef as a function of φL, φD, s 

and h. While a single parameter is varied, others are held at constant moderate values: γ = 12.02 kN/m3, c = 1.25 

MPa, φL = 7°, φD = 7°, h = 4.15m, s = 1.58m, σp = 5.19 MPa, φ = 43.33°.  

 

Regarding the individual effects of input factors on Imax, three groups of parameters could be singled 

out, Figure7: 

• Parameters with significant predominant positive (increasing) influence on Imax: σp and c.  

• Parameters with minor negative (decreasing) influence on Imax: γ, φD.  

• Parameter with minor positive (increasing) influence on Imax: s, φL, φ   

 

 
 

Figure 7. Effect of individual factors on Imax: (a) Imax as a function of γ, σp, φL, and φ; (b) Imax as a function of φD, 

s, c, and h. While a single parameter is varied, others are held at constant moderate values: γ = 12.02 kN/m3, c = 

1.25 MPa, φL = 7°, φD = 7°, h = 4.15m, s = 1.58m, σp = 5.19 MPa, φ = 43.33°.  
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The examined input factors have the following effects on Nmax, Figure 8: 

• Unit weight has almost no effect on Nmax.  

• Compression strength and cohesion have a significant positive (increasing) effect on Nmax. 
 

 
 

Figure 8. Effect of individual factors on Nmax: γ, σp, and c. While a single parameter is varied, others are held at 

constant moderate values: γ = 12.02 kN/m3, c = 1.25 MPa, φL = 7°, φD = 7°, h = 4.15m, s = 1.58m, σp = 5.19 

MPa, φ = 43.33°.  

 

Regarding the dependence of Pmax on the analyzed input factors, the results of the analysis indicate the 

following, Figure 9: 

• Slice height and coal unit weight have a minor positive effect on Pmax. 

• Slice thickness s and angle of the excavator movement in the left direction have a strong positive 

(increasing) effect on Pmax. 

• Excavator movement angle in the right direction has a strong negative (decreasing) effect on 

Pmax.  

• Compression strength and coal cohesion have negative effects for the lower range of values. For 

the upper range of values, they have a positive (increasing) effect.  
 

 
 

Figure 9. Effect of individual factors on Pmax: (a) Pmax as a function of γ, σp, and c; (b) Pmax as a function of φD, 

φL, h, and s. While a single parameter is varied, others are held at constant moderate values: γ = 12.02 kN/m3, c = 

1.25 MPa, φL = 7°, φD = 7°, h = 4.15m, s = 1.58m, σp = 5.19 MPa, φ = 43.33°.  
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Results of the performed analyses indicate the following influence of the input factors on Emax, Figure 

10: 

• Coal unit weight, compression strength, cohesion, and friction angle have almost no effect on 

Emax;  

• Excavator movement in the left direction and slice height have a slight positive (increasing) 

effect on Emax;  

• Excavator movement in the right direction has a slight negative (decreasing) effect on Emax. 
 

-  
 

Figure 10. Effect of individual factors on Emax: (a) Emax as a function of γ, σp, c and φ; (b) Emax as a function of 

φD, φL, and h. While a single parameter is varied, others are held at constant moderate values: γ = 12.02 kN/m3, c 

= 1.25 MPa, φL = 7°, φD = 7°, h = 4.15m, s = 1.58m, σp = 5.19 MPa, φ = 43.33°.  

 

The dependence of KLmax on the input factors is the following, Figure11: 

• Coal unit weight, cohesion, excavator movement angle in the left direction, and slice height 

have a slight positive (increasing) effect on KLmax;  

• Excavator movement in the right direction has a significant negative (decreasing) effect on 

KLmax;  

 

 
 

Figure 11. Effect of individual factors on KLmax: (a) KLmax as a function of γ and c; (b) KLmax as a function of φD, 

φL, and s. While a single parameter is varied, others are held at constant moderate values: γ = 12.02 kN/m3, c = 

1.25 MPa, φL = 7°, φD = 7°, h = 4.15m, s = 1.58m, σp = 5.19 MPa, φ = 43.33°.  



Trivan, J. et al: Smart mining: Joint model ……       Archives for Technical Sciences 2023, 29(1), 11-22 

                     Technical Institute Bijeljina, Archives for Technical Sciences. Year XV – N0 29.                 20 

 

Obtained results indicate the following effect of the examined input factors on KFmax, Figure 12: 

• Excavator movement angle in either direction and coal friction angle have almost no effect on 

KFmax; 

• Coal unit weight has a minor positive (increasing) effect on KFmax, which is the expected impact; 

• Slice height has a significant positive (increasing) effect on KFmax, which is also expected; 
 

 
 

Figure 12. Effect of individual factors on KFmax: (a) KFmax as a function of γ and φ; (b) KFmax as a function of φD, 

φL and h. While a single parameter is varied, others are held at constant moderate values: γ = 12.02 kN/m3, c = 

1.25 MPa, φL = 7°, φD = 7°, h = 4.15m, s = 1.58m, σp = 5.19 MPa, φ = 43.33°.   

 

 

CONCLUSIONS 

 

In the present paper, we propose a new model for the estimation of coal cutting resistance and excavator 

performance based on the application of artificial neural networks. The developed model includes the 

following input parameters: slice height h (m), slice thickness s (m), coal unit weight γ (kN/m3), coal 

compressive strength σp (MPa), coal cohesion c (MPa), and coal angle of internal friction φ (°), and the 

following output parameters: excavator effective capacity Qef (m3/h), maximum current consumption 

Imax (A), maximum power consumption Nmax (kW), maximum force consumption Pmax (kN), maximum 

energy consumption Emax (kWh/m3), excavator movement angle in the left direction φL(°), and excavator 

movement angle in the right direction φD (°), maximum linear cutting resistance KLmax (N/cm) and 

maximum areal cutting resistance KFmax (N/cm2). 

 

Statistical analysis of the obtained results indicates high statistical reliability of the developed model, 

with R>0.92. In contrast to our previous research [14], where we invoked the deep neural network 

approach, here we apply a multilayer perceptron feed-forward neural network, which results in the 

explicit mathematical expression for estimation of coal cutting resistance and excavator performance 

that could be further used in engineering practice.  

 

Additionally, in the present paper, we provide a detailed analysis of the effect of statistically significant 

and physically possible individual factors on the examined output factors. In particular, the results of 

our analysis indicate the following: 

• Effect of slice height h: 

o minor, but negative (decreasing) effect on Qef, 

o minor positive effect on Pmax, 

o a slight positive (increasing) effect on Emax,  

o a slight positive (increasing) effect on KLmax;  

o a significant positive (increasing) effect on KFmax. 



Trivan, J. et al: Smart mining: Joint model ……       Archives for Technical Sciences 2023, 29(1), 11-22 

                     Technical Institute Bijeljina, Archives for Technical Sciences. Year XV – N0 29.                 21 

 

• Effect of slice thickness s: 

o the most significant predominant influence on Qef, 

o a strong positive (increasing) effect on Pmax. 

• Effect of excavator movement angle in the left direction φL (°) 

o minor, but negative (decreasing) effect on Qef, 

o a strong positive (increasing) effect on Pmax, 

o a slight positive (increasing) effect on Emax;  

o a slight positive (increasing) effect on KLmax, 

o almost no effect on Kfmax. 

• Effect of excavator movement angle in the right direction φD  (°) 

o minor, but negative (decreasing) effect on Qef, 

o a strong negative (decreasing) effect on Pmax,  

o a slight negative (decreasing) effect on Emax, 

o a significant negative (decreasing) effect on KLmax. 

• Effect of coal unit weight γ (kN/m3) 

o minor positive (increasing) influence on Qef, 

o almost no effect on Nmax,  

o minor positive effect on Pmax, 

o almost no effect on Emax, 

o a slight positive (increasing) effect on KLmax, 

o a minor positive (increasing) effect on KFmax. 

• coal compressive strength σp (MPa) 

o minor positive (increasing) influence on Qef, 

o significant positive (increasing) effect on Nmax, 

o negative effect on Pmax for the lower range of values; for the upper range of values there 

is a positive (increasing) effect on Pmax,  

o almost no effect on Emax. 

• coal cohesion c (MPa) 

o minor positive (increasing) influence on Qef, 

o significant positive (increasing) effect on Nmax, 

o negative effect on Pmax for the lower range of values; for the upper range of values there 

is a positive (increasing) effect on Pmax,  

o almost no effect on Emax, 

o a slight positive (increasing) effect on KLmax.  

 

The coal friction angle has almost no influence on any of the examined output factors.  

 

The presented approach and developed model could be further utilized for smart planning of open-pit 

coal mining and optimization of the excavation process. The performance of the developed model could 

be improved and made for general use if a larger dataset is examined in the succeeding studies.  
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