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*Corresponding author. E-mail: mmilasinovic@grf.bg.ac.rs

MM, 0000-0002-3296-5224

© 2022 The Authors Journal of Hydroinformatics Vol 24 No 4, 898 doi: 10.2166/hydro.2022.034
ABSTRACT

Reliable water resources management requires decision support tools to successfully forecast hydraulic data (stage and flow hydrographs).

Even though data-driven methods are nowadays trendy to apply, they still fail to provide reliable forecasts during extreme periods due to a

lack of training data. Therefore, model-driven forecasting is still needed. However, the model-driven forecasting approach is affected by

numerous uncertainties in initial and boundary conditions. To improve the real-time model’s operation, it can be regularly updated using

measured data in the data assimilation (DA) procedure. Widely used DA techniques are computationally expensive, which reduce their

real-time applications. Previous research shows that tailor-made, time-efficient DA methods based on the control theory could be used

instead. This paper presents further insights into the control theory-based DA for 1D hydraulic models. This method uses Proportional–

Integrative–Derivative (PID) controllers to assimilate computed water levels and observed data. This paper describes the two-stage PID

controllers’ tuning procedure. Multi-objective optimization by Nondominated Sorting Genetic Algorithm II (NSGA-II) was used to determine

optimal parameters for PID controllers. The proposed tuning procedure is tested on a hydraulic model used as a decision support tool for

the transboundary Iron Gate 1 hydropower system on the Danube River, showing that the average discrepancy between modeled and

observed water levels can be less than 0.05 m for more than 97% of assimilation window.
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HIGHLIGHTS

• Unreliable boundaries and initial conditions affect model-driven forecasting.

• Control theory-based data assimilation (DA) is used for 1D open channel hydraulic model updating.

• PID controllers, used as DA tools, must be optimally tuned.

• A two-stage procedure for tuning PID controllers, using multi-objective optimization, is introduced.
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1. INTRODUCTION

Water resources management for different purposes (flood protection, hydropower production, water supply, and inland navi-
gation) is under growing pressure due to climate change, population growth, and high urbanization rate (Serdarevic ́ &
Šabanović 2018; Valipour et al. 2020; Maja & Ayano 2021). Optimal daily use and control of water resources require reliable

decision support tools. These tools must provide reliable forecasts of the hydraulic data such as stage and flow hydrographs
(Yang et al. 2021). Reliable hydraulic data can be used as a decision-making input eventually leading to a reduction of hydro-
climatic extremes and better water resources planning strategies (Huang & Fan 2021; Nie et al. 2021) and can improve

hydropower plant operation considering ecological risks (Wen et al. 2021).
Forecasting of the hydraulic data can be successfully conducted using a model-driven approach that relies on physically

based hydrologic and hydraulic models. However, physically based models strongly depend on the initial and boundary con-

ditions used for forecasting (e.g., estimated reservoir inflow), which are affected by numerous uncertainties (Bozzi et al. 2015;
Ocio et al. 2017). Traditionally, initial conditions in hydraulic models are estimated using the steady-state values of hydraulic
data (stage and flow). To improve the model-driven forecasting, initial conditions should be estimated in a hot-start manner,

meaning that an appropriate sample from the unsteady process has to be provided (stage and flow across the whole domain at
one-time sample). Therefore, observed data, available for the short previous period, are merged with physically based models
using data assimilation (DA). DA enables updating of model state according to observed data for better representation of the
real conditions. This results in improved initial conditions at the end of the assimilation window. The improved initial con-

ditions are then used for forecasting (Vrugt et al. 2006).
Different DA methods have been applied to solve problems in hydrological and hydraulic modeling where the ensemble

Kalman filter (EnKF) method is widely used (Evensen 1994, 2003). This method is successfully applied for improved flood

forecasting on large-scale domains (Madsen et al. 2003; Neal et al. 2007; Li et al. 2014; Barthélémy et al. 2017; Jafarzadegan
et al. 2021). Along with these applications, EnKF was also applied for improved urban flood forecasting and urban drainage
system management (Lund et al. 2019; Kim et al. 2021; Palmitessa et al. 2021). In most of the hydrological–hydraulic appli-

cations of DA, measured water levels from monitoring systems are used to update the model (Romanowicz et al. 2006;
Hostache et al. 2010; Jean-Baptiste et al. 2011; Rakovec et al. 2012) or streamflow observations (Thirel et al. 2010; Dumedah
& Coulibaly 2014; Randrianasolo et al. 2014; Sun et al. 2015). Recently, remotely sensed data, such as water levels and

streamflows from satellite images, are used for DA of river hydraulic models (Garambois et al. 2020; Khaki et al. 2020; Li
et al. 2020; Mauro et al. 2020; Musuuza et al. 2020; Pujol et al. 2020; Annis et al. 2021). Along with the satellite data, crowd-
sourced data are used (Mazzoleni et al. 2017, 2018).

All these DA applications in hydrologic–hydraulic modeling show high applicability of the standard DA methods, such as

EnKF. However, EnKF and similar DA methods are computationally expensive and often struggle to perform within a reason-
able time frame (Madsen & Skotner 2005). This makes them less applicable for solving practical problems related to water
resources management. Therefore, simplified tailor-made and time-effective DA methods suitable for solving some specific

problems are used (Madsen & Skotner 2005; Hansen et al. 2014; Fava et al. 2020).
For DA application in 1D river hydraulic models, the problem of computational cost can be solved using indirect DA like

control theory-based data assimilation (CTDA). In CTDA, water levels are assimilated by adding/subtracting correction flows

(Rosic ́ et al. 2017; Milašinovic ́ et al. 2018, 2019). These flows are calculated through Proportional–Integrative–Derivative
(PID) controllers (Åström & Hägglund 1995), which are significantly time-efficient, when compared to the EnKF method
(Milašinovic ́ et al. 2020). With its potential for practical and time-efficient application to water-related management problems,
it is necessary to further investigate its properties.

PID controllers’ output strongly depends on their parameters. Therefore, determining the controllers’ parameters (tuning of
the controllers) is one of the most important steps for any application (Ziegler & Nichols 1995). Various algorithms are pro-
posed for tuning the PID controllers in industrial process applications (Bansal et al. 2012; Borase et al. 2020). Most of these

methods use heuristic, trial-and-error approaches for tuning where a single objective (e.g., integral absolute error) is used to
evaluate the quality of controllers’ tuning. Recently, optimization-based tuning algorithms have been applied where controller
performance measures are used as the objective that has to be minimized (Altinten et al. 2008; Santos Coelho 2009; Ghargh-

ory & Kamal 2013). Additionally, when controller’s performance is evaluated using multi-metrics, the tuning procedure can
include the multi-objective optimization algorithms (Chiha et al. 2012). All these tuning procedures address the application of
the PID controllers in traditional, standard conditions such as the control of different industrial processes.
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Still, tuning of the multiple, interdependent PID controllers used in a nonstandard application (such as DA for river hydrau-

lic models), where multi-metric performance evaluation is used, has to be thoroughly investigated. Previous research
addressing this task (Milašinovic ́ et al. 2021) used a heuristic approach for initial multi-metric tuning of the PID controllers.
The procedure can be very efficient when there are several controllers applied. It provides homogeneously tuned controllers

(all controllers have the same, equal parameters’ values) which will improve the model’s DA performance indicators. How-
ever, increasing the number of controllers, positioned in different locations along the river, could significantly reduce the
performance of equally tuned controllers, making the application of trial-and-error tuning procedure(s) unjustified.

Hence, there is a necessity for an automatic tuning procedure for the PID controllers. Accordingly, the aim of this research

is to present improved, multi-objective optimization-based tuning of the controllers used as the DA tool for 1D open channel
hydraulic models. This automatic tuning uses DA performance indicators as the optimization objectives in a two-stage pro-
cedure. Stage 1 provides initially adjusted controllers and estimates ranges for PID controllers’ parameters using the manual

multi-metric tuning approach (Milašinovic ́ 2020; Milašinovic ́ et al. 2021). This paper introduces Stage 2, which presents
further tuning of PID controllers’ parameters using the multi-objective optimization with Nondominated Sorting Genetic
Algorithm II (NSGA-II) (Deb et al. 2002). The optimization test objectives included different combinations of DA perform-

ance indicators. The NSGA-II produced the range of optimal PID parameters for each individual controller.
2. MATERIALS AND METHODS

2.1. Implementation of the PID controllers into the hydraulic model

CTDA for open channel flows is based on updating water levels in the hydraulic model. For practical reasons, a brief expla-
nation of the PID controllers’ implementation in 1D hydraulic models is presented in this paper. The CTDAmethod, in detail,
can be found in previous research addressing this topic (Milašinović et al. 2020, 2021).

The hydraulic model is represented by the diffusion wave form of Saint-Venant’s equations (Equations (1) and (2)) discre-
tized using an explicit, staggered numerical scheme where the stage and flow data are calculated in alternate cross-sections.
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Here, x (m) is the space coordinate, t (s) is time, A (m2) is the cross-sectional area, Q (m3/s) is the discharge, q (m/s) is the

lateral inflow, Z (m) is local water surface elevation (water level), g (m/s2) is the acceleration due to gravity, R (m) is hydraulic
radius calculated as the ratio between the cross-sectional area and the wetted perimeter, β (/) is the velocity distribution coef-
ficient, n (m�1/3 s) is Manning’s roughness, which is calculated according to Costabile & Macchione (2012), and B (m) is the
top width of the cross-section (water surface width).

When the numerical model is applied, lateral inflow q is used to implement correction flow QPID (m3/s), which reduces the
water-level discrepancy between observations and the model (Equation (3)).

q ¼ 1
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i
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t
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In Equation (3), index i represents the spatial location (ith cross-section), B (m) is the top width of the cross-section (water
surface width), t in superscript denotes current time, Δx (m) is spatial resolution, and Δt (s) is temporal resolution.

The CTDA method for updating stage data in the hydrodynamic model introduces a new source element in continuity

equation (Equations (1) and (3); Figure 1(a)). This source element, represented as lateral correction flow (Equation (3) and
Figure 1(b)), enables adding or subtracting a certain amount of water from the model according to the difference between
modeled and measured water levels – error (Equation (4) and Figure 1(a)). The value of lateral correction flow QPID is
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Figure 1 | CTDA: (a) simplified algorithm and (b) implementation of the lateral correction flow into the hydraulic model (Milašinović et al.
2021).
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calculated using PID controller’s theory (Equations (5) and (6)).

e(t) ¼ [Z�
obs(t)� Zmodel(t)] � C (4)

C ¼
1 t ¼ tobs

Dtobs
tþ Dtobs � t prev obs

t = tobs

8<
: (5)

QPID(t) ¼ Qt
PID ¼ Kp � e(t)þKi �

ðt
t0
e(t)dtþKd

de
dt

(6)

In Equations (5)–(7), following variables are used:

e (m) – process error (difference between measured and modeled water levels),
Z*obs (m) – measured water levels (* denotes that measured values can be temporally interpolated when it is necessary),
Zmodel (m) – computed water levels (from the hydraulic model),

Δtobs (s) – the period between two observations,
tprev_obs (s) – time of the last observed data,
C (/) – attenuation factor [0–1] used to reduce the impact of the interpolated water levels (it is assumed that these values are

less reliable than really observed data),

Kp (/) – proportional gain factor,
Ki (/) – integrative gain factor, and
Kd (/) – derivative gain factor.

PID controllers used as DA tools are applied on each location in the model where observed (measured) water-level data are
available. These locations are named assimilation locations. For each controller, the optimal values of PID gain factors
(Kp, Ki, and Kd) are needed. The values of gain factors are computed using the tuning procedure.
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2.2. DA performance indicators

PID controllers’ tuning procedure is assessed using an adequate performance indicator (Åström & Hägglund 1995; Bansal
et al. 2012; Borase et al. 2020). The tuning procedure tends to minimize the difference between a process value (modeled

water levels) and a setpoint (observed, measured water levels), oscillations in process error, and settling time. When PID con-
trollers are used as a DA tool, four tuning indicators are proposed in the previous research (Milašinović et al. 2021). Root
mean square error (RMSE) represents the difference between a process value and a setpoint, the amplitude of the process
error maxError (to represent the oscillations), assimilation time ratio AssimTRatio (to represent the settling time), and

total correction volume CorrVol, which is a method-specific indicator, a product of PID controller-based assimilation (it rep-
resents the intensity of the controllers’ ‘intervention’ into the hydraulic model).
2.2.1. Root mean square error

The usage of the RMSE as a DA quality indicator depends on the number of observation locations where the model update is
conducted. In this research, the mean value of RMSE indicators for all assimilation locations is used (Equation (7)).

RMSE ¼ 1
M

XM
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

(Zj,obs � Zj,sim)

2
vuut (7)

where Zj,obs represents a sample from the observed water-level time series, Zj,sim represents a sample from the simulated
water-level time series, N is the number of time samples in the time series, and M is the number of locations used for the
calculation of RMSE indicator.

The lower bound of this metric is 0, which represents the ideal case of excellent assimilation performance (perfectly tuned
PID controllers).
2.2.2. Amplitude of the process error

During the assimilation process, the model is updated toward the measured data, but big oscillations of simulated water levels
could be present, especially at the beginning of the assimilation process. Hence, the amplitude of water-level oscillations, or

error amplitude, maxError is used to estimate DA quality (Equation (8)). Since there are several locations where DA perform-
ance has to be estimated, the mean value of error amplitudes is used. The lower bound of this metric is 0, so DA performance
is better for lower values of maxError.

maxError ¼ 1
M

XM
i¼1

max(jeij) (8)

where ei is the error time series for the ith location and M is the number of those locations.
2.2.3. Total correction volume

Total correction volume CorrVol represents the total volume of water added or subtracted by controllers at the assimilation
locations. This indicator is method-specific and applicable only in PID controller-based assimilation. It represents the esti-
mation of controllers’ intervention in the model. When confidence in boundary conditions is high, the total correction

volume tends to be zero. Here, it is evaluated as a sum of total correction volumes added/subtracted from the model at all
assimilation locations (Equation (9)). This indicator also has the lower bound set at 0.

CorrVol ¼
XMA

i¼1

ðtsim
0

QPID,i(t)dt
����

���� (9)

where MA is the number of assimilation locations, tsim is the period of the simulation when assimilation is performed (assim-
ilation window length), and QPID is the correction flow calculated using PID controllers’ theory (Equation (7)).
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2.2.4. Assimilation time ratio

Assimilation time ratio AssimTRatio (/) represents the ratio of the period in which process error exceeds the threshold to the
total assimilation time tsim. When AssimTRatio ratio is 0, it shows excellent DA performance (best value, perfectly tuned con-

trollers), while value 1 shows poor DA performance (worst value), where assimilation fails to correct the model toward
measurements. To evaluate the AssimTRatio, the error time series has to be transformed into the error duration curve
(Milašinovic ́ et al. 2021). As there are several observation locations where assimilation quality has to be estimated,
AssimTRatio is calculated as the average for all locations

The threshold value used to estimate AssimTRatio can vary and it should be carefully selected. Using a very rigid threshold
(e.g., less than 0.001 m) can lead to the underestimation of DA performance according to the AssimTRatio. The threshold
value must be selected according to the conditions where CTDA is applied. Some of the conditions that have to be considered

to select an appropriate threshold value are average depth and threshold ratio, water-level measurement uncertainty,
measurement location (e.g., river bay or open shore), and wind effects for large-scale applications. River water-level measure-
ment on the river and data acquisition is commonly conducted using some types of sensor (e.g., pressure sensor). In that case,

water-level measurement uncertainty can be up to 10 cm, depending on the sensor location and velocity (Larrarte et al. 2021).
Considering this limitation of the water-level sensors, the error threshold value used in this research is set to 0.05 m.

2.3. Two-stage tuning procedure based on DA performance indicators

Amanual, sequential tuning procedure for PID controllers used as a DA tool presented in previous research (Milašinovic ́ et al.
2021) provides acceptably well-tuned controllers and the possible range of the controllers’ parameters preserving the model

stability. The procedure also gives a set of homogeneously tuned controllers where each one has the same values for PID par-
ameters (Kp,Ki, andKd). Even though this tuning approach gives satisfactorily good results in most cases, DA performance can
significantly drop by increasing the number of assimilation locations (the number of controllers applied). Solving this issue

requires an automatic tuning procedure. This paper presents an improvement of the previous method in a two-stage tuning pro-
cedure (Figure 2). Here, multi-objective optimization is used to improve the initial tuning solution provided by the manual
procedure. Generally, multi-objective optimization can be conducted using two types of methods: scalarization and Pareto

(Cui et al. 2017; Gunantara 2018). Methods using scalarization would require assigning the weights for each objective function
and combining them into the single-objective function. Additionally, this approach requires the normalization of the objective
functions. Evaluating different weight combinations would require extensive analysis which would change the focus of this

research. Therefore, here presented multi-objective optimization problem is solved using the Pareto-based optimization algor-
ithm, Nondominated Sorting Genetic Algorithm (NSGA-II; Deb et al. 2002), which is widely used for solving multi-objective
optimization tasks for water resources (Artina et al. 2012; Darvishi & Kordestani 2019; Gao et al. 2019; Wang et al. 2019;
Gaur et al. 2021). Here, this algorithm is used to improve the initial tuning solution provided by the manual procedure.

A sequential tuning procedure where all controllers will have the same values of PID parameters is considered as Stage 1.
Obtained parameters are then used as the initial population for Stage 2, where parameters for each controller are improved
using the NSGA-II multi-objective optimization algorithm. The result of Stage 2 is a set of heterogeneous controllers which

can be additionally re-tuned from time to time using the previous parameters as initial populations.
Previous research (Milašinović et al. 2021) introduced four indicators (RMSE, maxError, AssimTRatio, and CorrVol) for

assessing the quality of DA performed using the PID controllers. These indicators are suitable for assessing the multi control-

lers’ performance when the setpoint is nonstationary (setpoint in CTDA is stage hydrograph). Indicators are used to represent
the average discrepancy between model and observed data (RMSE), overshooting (maxError), and settling time (AssimTRa-
tio). A CorrVol indicator is method-specific and describes the ‘intensity’ of the controllers’ intervention in the model. These
indicators have to be minimized in Stage 2 of the tuning procedure. Some of these indicators could be opposed, while some of

them could be of the same nature (minimizing one leads to the minimization of the other). To identify the indicators suitable
for automatic tuning of the controllers, different combinations of the objective combinations are used (Table 1). Combining
two objectives in multi-objective optimization makes it a lot easier to analyze the behavior of each one and to identify (poten-

tially) dominant objectives or those which are not suitable for automatic tuning procedure.

2.4. Case study

A two-stage tuning procedure for PID controllers in the CTDA method is tested for the transboundary hydropower system
Iron Gate 1 (IG1) on the Danube River shared between Serbia and Romania. Everyday operations of hydropower plants
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Figure 2 | A two-stage tuning procedure for PID controllers as a DA tool.
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Table 1 | Two-objective combinations used for multi-objective tuning of the PID controllers

Objective combination Objective function 1 Objective function 2

OC1 RMSE maxError

OC2 RMSE CorrVol

OC3 RMSE AssimTRatio

OC4 AssimTRatio maxError

OC5 AssimTRatio CorrVol

OC6 maxError CorrVol
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(HPPs) require short-term forecasting of water levels in the river section, which is affected by hydropower plants. For
improved forecasting (improved initial conditions), DA is required.

The hydraulic model for the Danube River section is 170 km long and has the hydropower plant IG1 representing down-

stream boundary conditions (Figure 3). The domain is discretized by 189 cross-sections, with an average distance of 900 m
between Jaroslav Černi 2019 and 2020. The river model is developed using the diffusion wave model with one upstream
inflow, neglecting all tributaries (lack of data). This supports the assumption that unreliable boundary conditions (inflow
data) are a dominant source of uncertainty in the model. Six observation locations are available across the river section:

Nera (132 km from IG1), Golubac (100 km from IG1), Dobra (74 km from IG1), D. Milanovac (47 km from IG1), Dubova
(25.7 km from IG1), and Orsova (10.3 km from IG1). The first five locations are used as assimilation locations (PID control-
lers are applied at these locations), while Orsova (closest to the downstream boundary) is used as a validation point.

A synthetic test case scenario is used for analysis in this paper. Observed water levels at six locations are generated using
the ‘true’ inflow hydrograph (black solid line in Figure 4). The total inflow volume for the given 7 days is 2.163�109 m3. Then,
the ‘true’ inflow is altered and changed to ‘uncertain’ inflow, or model-driving inflow (dashed line with black circle markers in

Figure 4). The difference between the ‘true’ and the ‘uncertain’ inflow is a sum of two sinusoidal functions with the amplitude
of 1,000 m3/s and frequencies of π/(10,000 s) and π/(5,000 s), which are arbitrary selected. The scenario is adopted to emulate
extreme conditions where model-driving inflow (‘uncertain’ inflow) significantly differs from the ‘true’ inflow (in this study

used to generate ‘true’ water levels). This also represents the case of sampling the inflow data on a poor timescale, which
results in big discrepancies. The altered inflow is set as an upstream boundary, with a total volume of 2.268�109 m3, with
an average ‘uncertain’ inflow which is larger than ‘true’ inflow of 104.7�106 m3 (Figure 4). At the downstream boundary,
the measured outflow and stage (dashed line and red dashed line with square markers are shown in Figure 4) are used.

Stage hydrograph is used to generate the true state, while outflow hydrograph is used as a model driver. Water-level
Figure 3 | Case study: the Danube river section influenced by the hydropower plant Iron gate (Milašinović et al. 2021).
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Figure 4 | Boundary conditions used as model drivers for the synthetic test case scenario (Milašinović et al. 2021).
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observations are obtained with Δtobs¼1 h, while computation time step Δt is set to 60 s, simulating real-world conditions
where the computation time step is, in most cases, smaller than the observation time step. The total simulation time of the

test case scenario is tsim¼7 days.
Stage (water-level) hydrograph or stage–discharge curve (rating curve) should be implemented as the downstream bound-

ary condition for proper open channel hydraulic modeling. On the other hand, in most real-world cases, HPP operations are

controlled by the discharge (when a reservoir exists), so water-level (stage) and stage–discharge curve are not easy to deter-
mine. Therefore, the outflow hydrograph is used as a downstream boundary condition in the model exploitation phase. This
also induces big discrepancies between observed water levels and model results. As it can be seen in Figure 6, the outflow

hydrograph reflects the daily power production in real-world HPP operations.
3. RESULTS AND DISCUSSION

The multi-objective tuning procedure is evaluated on the iron gate hydropower system test case (Figure 3). In Stage 1 of the
two-stage tuning, the procedure was determined that the derivative gain of the PID controller has no impact on the improve-

ment of DA quality indicators (Milašinovic ́ et al. 2021). Increasing the value of derivative gain factors Kd (Figures 11, 12, and
13 in.supplementary materials), for this case study, results in abnormal water-level fluctuations and leads to model instability.
Therefore, this parameter is set to 0. Using the estimated values of proportional and integrative gain factors (Kp and Ki) from
Stage 1, the initial population representing PID controllers’ parameters is created for Stage 2. Further tuning is provided using

the multi-objective optimization algorithm NSGA-II for different combinations of two-objective functions (Table 1). The goal
of the multi-objective tuning procedure (Stage 2) is to find the range of optimal values for Kp and Ki parameters for each
assimilation location in the case study (each PID controller individually). Here, NSGA-II is applied using the population

size of 100. Ranges of the Kp and Ki are bounded by 0 at the lower bound and 100 at the upper bound, according to the results
obtained in Stage 1 (see Supplementary Material). Initial values of the PID parameters (initial population) are set to 10 (both
Kp and Ki) for each of the five assimilation locations.
://iwaponline.com/jh/article-pdf/24/4/898/1080444/jh0240898.pdf
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The NSGA-II-based tuning procedure found optimal, nondominated values of objective functions – Pareto fronts (Figure 5)

and connected ranges of optimal values for Kp (Figure 6) and Ki (Figure 7) at each assimilation location. Ranges of optimal
values for Kp and Ki are represented by the min, mean, median, and max values (Figures 6 and 7 and Table 2 in Supplemen-
tary Material).

When ranges of optimal values for Kp are analyzed with RMSE and AssimTRatio, objectives combination OC3 results in
the narrowest ranges (Figure 6). These ranges (integer boundaries) are 51–61 for Nera assimilation location, 46–48 for Golu-
bac, 65–70 for Dobra, 31–37 for D. Milanovac, and 61–65 for Dubova. Similarly, optimal values for Ki have the narrowest
range when objective combination OC3 is used: 32–33 for Nera assimilation location, 69–72 for Golubac, 5–10 for Dobra,

25–28 for D. Milanovac, and 41–42 for Dubova. When it comes to objective values, for this OC3 objective combination
(Figure 5(c)), it is obvious that the NSGA-II algorithm created the Pareto front where the range of objectives’ values
varies around 0.031 for AssimTRatio and around 0.021 m for RMSE. Practically, it signalizes that these two objectives are

not conflicted but have the same nature (reducing one of them leads to reduction of the second one and vice versa) and a
global optimum can be found.

Generally, PID controllers’ output can be modified to reduce the max value of the error process (maxError). This reduction
is generated by ‘slowing down’ the controller, which results in increasing the settling time (here described by the AssimTRatio
indicator). This means that objectives RMSE and AssimTRatio are opposed to the maxError indicator. When RMSE and
AssimTRatio are combined with maxError (objectives combinations OC1 and OC4), ranges of optimal values for PID par-

ameters are wider (Figures 6 and 7). In these cases, Kp values are 44–61 (OC1) and 27–42 (OC4) for Nera assimilation
location, 55–61 (OC1) and 34–76 (OC4) for Golubac, 61–70 (OC1) and 41–68 (OC4) for Dobra, 37–44 (OC1) and 39–56
(OC4) for D. Milanovac, and 59–68 (OC1) and 21–37 (OC4) for Dubova. Ki values are 32–34 (OC1) and 32–34 (OC4) for
Nera assimilation location, 51–61 (OC1) and 46–62 (OC4) for Golubac, 10–16 (OC1) and 10–18 (OC4) for Dobra, 7–21

(OC1) and 19–25 (OC4) for D. Milanovac, and 41–43 (OC1) and 40–42 (OC4) for Dubova. Combining RMSE or AssimTRatio
with the maxError indicator provides slight improvement of objectives when it is compared to values of the indicators
Figure 5 | Pareto fronts for different two-objective combinations: (a) Objective combination OC1, (b) Objective combination OC2, (c)
Objective combination OC3, (d) Objective combination OC4, (e) Objective combination OC5, and (f) Objective combination OC6.
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Figure 6 | Ranges of optimal values for proportional gain factors obtained by different two-objective combinations.

Figure 7 | Ranges of optimal values for integrative gain factors obtained by different two-objective combinations.
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obtained in Stage 1. When OC1 objective combination is used, RMSE varies around 0.021 m, which is pretty much the same

when it is compared with the value of this indicator obtained in Stage 1, while maxError is in the range of 0.073–0.077 m
comparable to the results from Stage 1. The usage of OC4 objective combination (combining the AssimTRatio and maxError
indicators) shows improvement in the values for AssimTRatio. Stage 1 (see Supplementary Material) provided the solution of

the PID parameters where AssimTRatiowas 0.075. This means that process error (difference between measured and modeled
water levels) is below the threshold for more than 92.5% of the assimilation period. When the tuning procedure is extended
into Stage 2 using the NSGA-II, this indicator is reduced by 50% that is approximately 0.031–0.032. It means that the process
error is below the threshold for more than 96.8% of the assimilation window. The lack of any significant improvement in DA

performance indicators (only AssimTRatio displays a noticeable improvement) can be explained by the short period used for
assimilation. In addition, a small number of assimilation locations are used. In this case, it is possible to manually tune PID
controllers and reach some optimal values. The more complex case, with a longer period for assimilation and tuning of the

controllers, will be the subject of future research.
The application of CorrVol indicator in the tuning procedure shows a significant impact on the multi-objective optimization

results. In each objective combination where CorrVol appears, there is a significant deterioration of the assimilation results

(Figure 8). In OC2 combination, optimization algorithm found Pareto front where CorrVol indicators vary between 0.4�109

and 1�109 m3. Minimization of the CorrVol indicators increases RMSE values eight times that are approximately 0.021–
0.181 m compared to results when OC1 and OC3 objectives are used. In this case (OC2), maxError and AssimTRatio are

used as independent indicators (not used for optimization). Minimizing the CorrVol also increases AssimTRatio andmaxError
10 times approximately (Figure 8). The same trend occurs in OC5 and OC6 combinations. The increase of the RMSE, Assim-
TRatio, or maxError ranges, when these indicators are used as the objectives combined with CorrVol, provides the results of
very low quality (the model is unable to reach observed data). Minimization of the CorrVol in the tuning procedure leads to a

significant increase in all other DA performance indicators, no matter if they are used as the objective function or as an inde-
pendent indicator (Figure 8). The best results, in objective combinations where CorrVol appears as one of the objectives, are
obtained when optimal values of the PID parameters are represented by the min value from the range. Using any other opti-

mum representative (mean, median, or max value) leads to a significant decrease in the DA quality (Figure 8). This indicates
that CorrVol should not be used as the objective for tuning of the PID controllers.
Figure 8 | DA indicators for simulations with optimally tuned controllers in different objective combinations.
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The CTDA method assumes that unreliable boundary conditions dominantly create a discrepancy between modeled and

measured water levels. This means that the water volume which has to be added/subtracted to the model in the CTDA
method (in order to keep the model and measurements assimilated) is predetermined and it cannot be minimized. Therefore,
CorrVol cannot be utilized as the objective in multi-objective optimization because it leads to significant deterioration of all

other indicators. Obtained results (for different objective combinations) show that the NSGA-II algorithm used in a two-stage
tuning procedure can provide satisfying results only when appropriate criterion functions are used in multi-objective optim-
ization. Results show that process error during the assimilation window varies between �0.1 and 0.1 m (Figure 9) for
controllers optimized using objective combinations OC1, OC2, and OC4, considering even validation station Orsova (no

PID controller at this location).
Even though the CorrVol should not be used as the objective for tuning of the controllers, it should not be neglected as the

DA performance indicator. When the PID controllers are well-tuned, CorrVol can be calculated for each assimilation location

separately. Spatially distributed CorrVol can be used to identify the location of the biggest discrepancy between the model and
measurements. For the Iron gate synthetic test case analyzed in this paper, this approach shows that most of the correction
flow volume is generated at the downstream section, which is near the hydropower plant boundary condition (Figure 10).

Locations closest to the downstream boundary condition (Dubova and Orsova) have a greater process error range than
other stations. This information can help in adjusting the downstream boundary condition. Besides this, the assimilation
location nearest to the upstream boundary conditions (Nera station) shows a significant discrepancy between modeled

and measured data. This is the consequence of the unreliable inflow estimation, and it indicates the necessity for improved
inflow forecasting. In theory, CorrVol could be dominantly distributed at the assimilation locations in the middle of the model
domain. It can indicate that some significant tributary is neglected in the model, and this internal boundary condition should
be better implemented.

Therefore, the pre-processing phase should be performed where CorrVol should be considered to identify the locations of
dominant uncertainty sources and eventually reduce it. After this identification, appropriate model reconfiguration should be
conducted. For example, if the downstream boundary condition dominantly creates uncertainty in the model, better rating

curves have to be estimated, or it would require a representation of the downstream boundary in more detail (detailed
equation representing hydropower plant instead of a rating curve). Upstream boundary condition uncertainty is mainly
driven by unreliable inflow forecasting. To reduce this reservoir inflow uncertainty, for example, more reliable hydrologic

models should be used, or even data-driven inflow forecasting should be considered.
Figure 9 | Process error timeseries (primary y axis) and observed water levels (secondary y axis) in an assimilation window at each water-
level station when optimal PID parameters are used, and the mean value used as an optimum representative.
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Figure 10 | CorrVol indicator calculated for each assimilation location in the Iron gate test case when optimal PID parameters are used (mean
value used as an optimum representative).
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Finally, even though CTDA has been proved as the time-efficient method compared to ensemble-based DA (Milašinovic ́
et al. 2020), the multi-objective tuning procedure slows it down. Using iterative tuning (in the optimization process) increases

computational time (depending on the hardware configuration) which reduces the possibility of using this tuning approach on
a daily basis. This could be considered as the main disadvantage of the proposed tuning procedure.

Instead of running the optimization algorithm every day (or every hour, depending on the timescale), PID controllers

should be tuned in a pre-processing phase. This means that controllers should be re-tuned from time to time using a
longer assimilation window (more data can be obtained in the period between two tunings) before it is applied for (near)
real-time DA. In this case, the performance of the PID controllers should be monitored in (near) real-time using DA quality

indicators with assigned trigger values. When some of the DA quality indicators drop below the assigned trigger value, the
tuning procedure should be restarted. In the period between two tunings, PID controllers should use parameters’ values
obtained when the last tuning was conducted.
4. CONCLUSIONS

This paper presents in detail the tuning procedure required to estimate PID controllers’ parameters when they are used as the
DA tool for 1D hydraulic models. Relying on the results of the previous research where CTDA was developed with a manual
procedure of adjusting all PIDs with the same parameters (Stage 1), the tuning procedure is now extended with the multi-
objective optimization (Stage 2), so each PID will have its own optimal parameters (proportional gain factor Kp and integra-

tive gain factor Ki) according to local conditions at assimilation location. The presented Stage 2 tuning is performed using the
multi-objective optimization algorithm NSGA-II with different combinations of two objectives. The objectives are selected
from DA performance indicators introduced in previous research: RMSE, maxError, AssimTRatio, and CorrVol.

The output from Stage 2 provides a set of heterogeneously tuned controllers, where a range of optimal values is given for
each PID parameter (Kp and Ki) at all assimilation locations. Based on the results obtained in this research, the following
specific conclusions can be derived:

• Multi-objective optimization using the NSGA-II algorithm can be successfully used for tuning of the PID controllers used as
DA tools for 1D hydraulic models.
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• The success of the multi-objective optimization-based tuning procedure depends on the selection of performance indicators

used as the optimization objectives.

• CorrVol, as the method-specific DA performance indicator, cannot be used as the tuning objective, because it is predeter-
mined. The minimization of this objective significantly increases all other DA performance indicators.

• Instead of using the CorrVol in the tuning process, this parameter should be used for identifying the dominant uncertainty
sources. Based on this identification, further improvements in the hydraulic model can be conducted.

Specific conclusions from this research show that the CTDA method provides good DA results if all tuning procedure steps
are completed. Considering the main outputs from this research and previous research on the application of CTDA, a few
more steps should be clarified to complete the framework for the implementation of the PID controllers as the DA tool
for 1D open channel flow models. As it is derived from this paper, the two-stage tuning procedure should be restarted

occasionally, especially when model inputs significantly differ from the one used for the previous tuning. This procedure
should be also done for an extended assimilation window to show the full capacity. This would require a definition of a
straight-forward algorithm for re-tuning the PID controllers used for (near) real-time DA. The completed framework

should result in improved initial conditions (as the main output when the CTDA method is used), which can be used for
further forecasting of the hydraulic data. However, reliable near-future forecasting to help decision-making in water resources
management should be considered as the ultimate goal. This means that the CTDA method improves only one aspect of the

forecasting (initial data). Forecasting results are still affected by unreliable boundary conditions in the forecasting window
(e.g., unreliable inflows). Therefore, an extension of the DA into the forecasting window should be also considered as the
next step in CTDA application, which will be a subject of forthcoming research.
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